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1 PREFACE

This book is a guide on how to improve processes using the large quantities of data that are routinely
collected from process systems. It is in a state of a semi-permanent draft.

We cover data visualization (page 1) first, in Chapter 1, since most data analysis studies start by plotting
the data. This is an extremely brief introduction to this topic, only illustrating the most basic plots
required for this book. Please consult the references in this chapter for more exciting plots that provide
insight to your data.

This is followed by Chapter 2 on univariate data analysis (page 29), which is a comprehensive treatment
of univariate techniques to quantify variability and then to compare variability. We look at various
univariate distributions and consider tests of significance from a confidence-interval viewpoint. This is
arguably a more useful and intuitive way, instead of using hypothesis tests.

The next chapter, Chapter 3, is on monitoring charts (page 109) to track variability: a straightforward
application of univariate data analysis and data visualization from the previous two chapters.

Chapter 4 introduces the area of multivariate data. The first natural application is least squares
modelling (page 151), where we learn how variation in one variable is related to another variable. This
chapter briefly covers multiple linear regression and outliers. We don’t cover nonlinear regression
models but hope to add that in future updates to the book.

Chapter 5 covers designed experiments (page 231), where we intentionally introduce variation into our
system to learn more about it. We learn how to use the models from the experiments to optimize our
process (e.g. for improved profitability).

The final chapter, Chapter 6, is on latent variable modelling (page 315) where we learn how to deal with
multiple variables and extract information from them. This section is divided in several chapters
(PCA, PLS, and applications). It is still a work in progress and will be improved in the future.

Because this is a predominantly electronic book, we resort to many hyperlinks in the text. We
recommend a good PDF reader that allows forward and back navigation of links. However, we have
ensured that a printed copy can be navigated just as easily, especially if you use the table of contents
and index for cross referencing.

Updates: This book is continually updated; there isn’t a fixed edition. You should view it as a wiki.
You might currently have an incomplete or older draft of the document. The latest version is always
available at https://learnche.org/pid.

Acknowledgements: I would like to thank my students, teaching assistants, and instructors from
McMaster University, as well as other universities who have, over the years, made valuable comments,
suggestions and corrections. They have graciously given permission to use their solutions to various
questions. Particular thanks to Emily Nichols (2010), lan Washington (2011), Ryan McBride (2011),



https://learnche.org/pid

Stuart Young (2011), Mudassir Rashid (2011), Yasser Ghobara (2012), Pedro Castillo (2012), Miles
Montgomery (2012), Cameron DiPietro (2012), Andrew Haines (2012), Krishna Patel (2012), Xin Yuan
(2013), Sean Johnstone (2013), Jervis Pereira (2013), and Ghassan Marjaba (2014), Kyla Sask (2015, and
2016). Their contributions are greatly appreciated.

The textbook was used in an online course from July to August 2014, Experimentation for
Improvement!. Comments and feedback from that course have greatly improved this book. Thanks to
all the Courserians. That Coursera course was relaunched, and is still active. All videos created for that,
as well as videos created for the Ontario Online Initiative have been embedded in the textbook. Look
for the YouTube videos on the web version of this book, or if reading it from a PDF, watch for the icon
shown.

In particular, I'd like to thank Devon Mordell, from McMaster University, for her informal help on
editing parts of the book. As well as countless others who have via email or web forms provided
feedback. Any errors, poor spelling and grammar are entirely my own fault — any feedback to improve
them will be appreciated?.

Thanks also to instructors at other universities who have used these notes and slides in their courses
and provided helpful feedback.

Tip: Copyright and Your Rights

This book is unusual in that it is not available from a publisher. You may download it electronically,
use it for yourself, or share it with anyone.

The copyright to the book is held by Kevin Dunn, but it is licensed to you under the permissive
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)° license.

In particular, you are free to
¢ share - copy, distribute and transmit the work (which includes printing it).
¢ adapt - but you must distribute the new result under the same or similar license to this one.
e commercialize - you are allowed to create commercial applications based on this work.
¢ attribute - but you must attribute the work as follows:
— Using selected portions: “Portions of this work are the copyright of Kevin Dunn.”
— Orifused in its entirety: “This work is the copyright of Kevin Dunn.”

You don’t have to, but it would be nice if you tell us you are using this book. That way we can let you
know of any errors.

* Please tell us if you find errors in these chapters, or have suggestions for improvements.
* Please email to ask permission if you would like changes to the above terms and conditions.

Thanks, Kevin*

1 https: //www.coursera.org/learn/experimentation

2 https://docs.google.com /forms/d /e/1FAIpQLScENs2JsKnSTHLAOAlu__blZZ1cJdc7P0yDuSvyM3X7mLqsoQ/ viewform
3 https:// creativecommons.org/licenses/by-sa/4.0/

* kgdunn@gmail.com
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CHAPTER 1

| VISUALIZING PROCESS DATA

1.1 Data visualization in context

This is the first chapter in the book. Why? Many of you have heard the phrase “plot your data,” but
seldom are we shown what appropriate plots look like.

In this section we consider quantitative plots — plots that show numbers. We cover various plots that
will help you gain more insight from your data. We end with a list of tips for effective data
visualization.

Usage examples
You can use the material in this chapter when you must learn more about your system from the data.
For example, you may get these questions:

¢ Co-worker: Here are the yields (final output value) from a given system for the last 3 years (1256 data
points). Can you help me:

- effectively communicate what the time trends are in the data?
- summarize the yield values?

¢ Manager: How can we effectively summarize the (a) number and (b) types of defects on our 17
products for the last 12 months?

* Yourself: We produce products in a batchwise manner. For each batch we have 25 different sensors
that we record a value for at a rate of 5 readings per minute, over a total interval of 300 minutes.
How can we visualize these 25 x 5 x 300 = 37500 data points?




Video for
this
section.
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What we will cover
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Use of colour Time-series plots

Tables ——H Data visualization Bar plots

Scatter plots
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Box plots

1.2 References and readings

1. Edward Tufte, Envisioning Information, Graphics Press, 1990. (10th printing in 2005)
2. Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 2001.

3. Edward Tufte, Visual Explanations: Images and Quantities, Evidence and Narrative, 2nd edition,
Graphics Press, 1997.

~

. Stephen Few, Show Me the Numbers and Now You See It: Simple Visualization Techniques for
Quantitative Analysis; both from Analytics Press.

31

. William Cleveland, Visualizing Data, 1st edition, Hobart Press, 1993.

6. William Cleveland, The Elements of Graphing Data, 2nd edition, Hobart Press, 1994.

N

. Su, It’s Easy to Produce Chartjunk Using Microsoft Excel 2007 but Hard to Make Good Graphs®,
Computational Statistics and Data Analysis, 52 (10), 4594-4601, 2008.

1.3 Time-series plots

We start off by considering a plot most often seen in engineering applications: the time-series plot. The
time-series plot is a univariate plot: it shows only one variable. It is a 2-dimensional plot in which one
axis, the time-axis, shows graduations at an appropriate scale (seconds, minutes, weeks, quarters,
years), while the other axis shows the numeric values. Usually, the time-axis is displayed horizontally,
but this is not a requirement: some interesting analysis can be done with time running vertically.

Many statistical packages call this a line plot, as it can be used generally to display any sort of
sequence, whether it is along time or some other ordering. The time-series plot is an excellent way to
visualize long sequences of data. It tells a visual story along the sequence axis, and the human brain is
incredible at absorbing this high density of data, locating patterns in the data such as sinusoids, spikes,
and outliers, and separating any noise from signal.

Here are some tips for effective time-series plots:

¢ The software should have horizontal and vertical zooming ability. Once zoomed in, there must be
tools to scroll up, down, left and right.

5 https://dx.doi.org/10.1016/j.csda.2008.03.007
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¢ Always label the x-axis appropriately with (time) units that make sense.

aq.org CPU temperature over time

&0 T T T T T T T T
+ + o+ Artual values +
+ + + o+ + + Smoothed data
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W -+ + w 'M' + -HHEHEH-.- - + + +
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This plot, found on the Internet, shows a computer’s CPU temperature with time. There are several
problems with the plot, but the key issue here is the x-axis. This plot is probably the result of poor
default settings in the software, but as you will start to realize, bad defaults are very common in
most software packages. They waste your time when you have to repeatedly modify the charts,

especially if you are just starting out with exploring the data. Good software will sensibly label the
time-based axis for you.

* When plotting more than one trajectory (a vector of values) against time, it is helpful if the lines do
not cross or jumble too much. This allows you to clearly see the relationship with other variables.
The use of a second y-axis on the right-hand side is helpful when plotting two trajectories, but when

plotting three or more trajectories that are in the same numeric range, it is better to use several
parallel axes.

L J
0
23 Jan 2008 0:0¢ 25 Jan 2008 0:00 27 Jan 2008 (:00 29 Jan 2008 0:00 31 Jan 2008 0:00 02 Feb 20¢& 0:00 04 Feb 2008 0:00 06 Feb 2008 0:00 08 Feb 2009 0:0(5-10 Feb 2009 0:00 12 Feb 2008 0:00

O TypeA < Type B Type C

23-Jan 26-Jan 30-Jan 2-Feb E-Feb 9-Feb 13-Feb
2008 2009

1.3. Time-series plots 3
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* Using the same data as in the previous tip, a much improved visualization technique is to use
sparklines to represent the sequence of data.

0.81
Type A

Type B WLN
Type C VMWMA1 32

Sparklines are small graphics that carry a high density of information. The human eye is easily
capable of absorbing about 100 dots or points per linear centimeter and around 10000 points per
square centimeter. These sparklines convey the same amount of information as the previous plots
and are easy to consume on hand-held devices such as cellphones and tablet computing devices
that are common in chemical plants and other engineering facilities. Read more about them from
this hyperlink®.

* When plotting money values over time (e.g. sales of your product over the past 10 years), adjust for
inflation effects by dividing by the consumer price index or an appropriate factor. Distortions due to
the time value of money can be very misleading, as this example of retail sales shows’. For
Canadians, here is a Canadian inflation calculator® from the Bank of Canada that can help you. For
most countries you can almost certainly find something similar from the country’s national bank or
a government office.

¢ If you ever ask yourself, “Why are we being shown so little?” then you must request more data
before and after the time period or current sequence shown. A typical example is stock-price data
(see example figure of Apple’s stock (page 4)). There are numerous graphical “lies” in magazines and
reports where the plot shows a drastic change in trend, but in the context of prior data, that trend is
a small aberration. Again, this brings into play the brain’s remarkable power to discern signal from
noise, but to do this, our brains require context. Ask for the extra context, or look for it, if not

provided.

6 https://www.edwardtufte.com/bboard / g-and-a-fetch-msg?msg_id=00010R
7 http://people.duke.edu/~rnau/411infla.htm
8 https://www.bankofcanada.ca/rates/related /inflation-calculator
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1. Got to buy some of this stock! 2. But, here is some more context
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3. And, even further context 4, To finish: all available data
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i 1.4 Bar plots

Video for 1he bar plot is another univariate plot on a two-dimensional axis. The two axes are not called x- or

this
section.

y-axes. Instead, one axis is called the category axis showing the category name, while the other, the
value axis, shows the numeric value of that category, given by the length of the bar.

Insurance
Entertainment
Electronic devices
Healthcare
Eating out
Travel Category axis
Personal items
Groceries
Investments
Car expenses
House expenses

0 3000 6000 9000 12000

Expense breakdown tzU

Here is some advice for bar plots:

Value axis

® Use a bar plot when there are many categories and interpretation of the plot does not differ if the
category axis is reshuffled. (It might be easier to interpret the plot with a particular ordering;
however, the interpretation won't be different with a different ordering of the categories.)

¢ A time-series plot is more appropriate than a bar plot when there is a time-based ordering to the
categories, because usually you want to imply some sort of trend with time-ordered data. Therefore

1.4. Bar plots
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do not use a bar plot for time trends, rather use a time-series plot.

132

120
|

107

104

100
|

96

85

82

80
1

72

63

Quarterly profit ($ '000)
60
1

40

20
1

2008 Q1 Q2 Q3 Q4 2009Q1 Q2 Q3

Use this R code to draw the figures:

Tabels = c (72008 QIT™,
"2009 o1",

c(45, 32, 67,

TQZT, T
"Q2m", "Q3",
profit = 23, 42, 56, 64,
# Draw a bar-plot
bp = barplot (profit,
names.arg=labels,
axisnames=TRUE,
ylab="Quarterly profit
border = TRUE)
profit+3,
labels=format (profit),
xpd = TRUE,
col = "black")

text (bp,

# Now rather use a line plot.

# Graph profit, but turn

# and annotations

plot (profit, type="b", axes=TRUE,
ann=FALSE, xaxt="n")

off axes

# Show the x-axis using our labels
axis(l, at=1:8, lab=labels)

# Plot title

title(ylab="Quarterly profit ($ '000)")

Q4

100 110 120 130

90

Quarterly profit ($ '000)

80

70

ly— fit-b lots.R
n quapherly-profit-barplots
"Q4")

92)+40

($

"000) ",

\

o

T T T T T T T T
2008 Q1 Q2 Q3 Q4 2009 Q1 Q2 Q3 Q4

or this Python code:

import
import

pandas as pd
matplotlib.pyplot as plt

labels = ["2008 O1",
profit = (
pd.DataFrame (
data=[45, 32,
index=1labels,

"Q2m, wQ3m, mo4n,

67, 23, 42, 56,

columns=["Quarterly profit ($

64,

quarterly-profit-barplots.py

"2009 Q1",

921,

'000) "]

"Q2m, wQ3M, mQ4n]

(continues on next page)
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(continued from previous page)

# # Draw a bar-plot

ax = profit.plot.bar(color="lightgrey')
ax.set_ylabel ("Quarterly profit ($ '000)")
plt.show()

# Now rather use a line plot.
ax = profit.plot.line (marker="0o")
ax.set_ylabel ("Quarterly profit ($ '000)™)

plt.show()

¢ Bar plots can be wasteful as each data point is repeated several times:

—_

. Left edge (line) of each bar

Right edge (line) of each bar

The height of the colour in the bar

The number’s position (up and down along the y-axis)

The top edge of each bar, just below the number

AR

The number itself
To this end, Tufte defines the data ink ratio as:

total ink for data
total ink for graphics

Data-ink ratio =
= 1 — proportion of ink that can be erased without loss of data information

The heuristic is to maximize this ratio as far as possible by using the ink (pixels) for only the data.

¢ Rather use a table than a bar plot for a handful of data points.

Profit ($ ‘000) 600

Ontario 562
Manitoba 423 g e
Quebec 231 @ 500

Nova Scotia 181 .‘E I
Alberta Q0 o 450 l .
iti i 82
British Columbia , - l

Ontario Manitoba Quebec Nova Scotia Alberta British Columbia

¢ Don't use cross-hatching, textures or unusual shading in the plots. This creates distracting visual
vibrations.

1.4. Bar plots 7
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Death Rates in Virginia
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e Use horizontal bars if

— there is some ordering to the categories (it is often easier to read the category labels from
top-to-bottom), or

— if the labels do not fit side-by-side: don’t make the reader have to rotate the page to interpret the
plot; rotate the plot for the reader.

* You can place the labels inside the bars.

* You should start the noncategory axis at zero: the bar’s area shows the magnitude. Starting bars at a
nonzero value distorts the meaning.

1.5 Box plots

Box plots are an efficient summary of one variable (univariate chart), but can also be used effectively to
compare variables that are in the same units of measurement.

The box plot shows the so-called five-number summary of a univariate data series:
1. Minimum sample value

2. 25th percentile’ (1st quartile'?)

3. 50th percentile (median)

4. 75th percentile (3rd quartile)

5. Maximum sample value

The 25th percentile is the value below which 25% of the observations in the sample are found. The
distance from the 3rd to the 1st quartile is also known as the interquartile range (IQR) and represents
the data’s spread, similar to the standard deviation.

9 https://en.wikipedia.org/wiki/Percentile
10 https://en.wikipedia.org/wiki/Quartile
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The following data are thickness measurements of 2-by-6 boards (2-by-6 refers for the thickness and

depth of a wooden board), taken at six locations around the edge. Here is a sample of the
measurements and a summary of the first 100 boards (code in R and Python respectively):

all.boards = read.csv("http: openm%?%€%7%qﬁ%5%%§§igﬁ%%£%%é§dfthlckness.csv")
boards = all.boards[1:100, 2:7]

+

Look at the start and end of the data

d summarize your data before

# doil

1g anything else
head (boards)
tail (boards)

summary (boards)

boxplot (boards)

Import pandas as pd board-thickness-boxplot.py

import matplotlib.pyplot as plt

all boards = pd.read_csv("http://openmv.net/file/six-point-board-thickness.csv")
boards = all_boards.iloc[0:100, 1:7]

and end of the data

- data before

# do

boards.head ()

boards.tail ()
boards.describe ()
ax = boards.plot.box (fontsize=16)

plt.show()

The following box plot is a graphical summary of these numbers.
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A box plot is great for comparisons. In this figure we see how the thickness at position 1 is greater than

at the other positions. It is also the position with high variability, indicating that something about the

saw blade at that position is not what it should be. The median is also not balanced between the two

quantiles for this box plot, when compared to the others.

Some variations for the box plot are possible:

1.5. Box plots
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¢ Show outliers as dots, where an outlier is most commonly defined as any point 1.5 IQR distance
units away from the box. The box’s upper bound is at the 25th percentile, and the boxes lower
bound is at the 75th percentile.

¢ The whiskers on the plots are drawn at most 1.5 IQR distance units away from the box, however, if
the whisker is to be drawn beyond the bound of the data vector, then it is redrawn at the edge of the
data instead (i.e. it is clamped, to avoid it exceeding).

¢ Use the mean instead of the median [nof too common].
¢ Use the 2% and 98% percentiles rather than the upper and lower hinge values.
Example

In a final exam for a particular course at McMaster University there was an open-ended question.
These data values are the grades!! achieved for the answer to that question, broken down by whether
the student used a systematic method, or not. No grades were given for using a systematic method;
grades were awarded only for answering the question.

A systematic method is any method that assists the student with problem solving. For example, a
strategry could be to: define the problem, identify knowns/unknowns and assumptions, explore
alternatives, plan a strategy, implement the strategy and then check the solution.

Draw two box plots next to each other that compare the grades of students who did, or did not use a
problem solving strategy. Comment on any features you notice in the comparison.

Answer

Several points are apparent in the box plot:
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¢ students in either category achieved the highest grade possible
¢ the spread (interquartile distance) when using the problem solving method is smaller
* both box plots show a skew to the lower left tail (compare the median to the first and third quartiles)

* we will use a confidence interval (page 70) in a later chapter to judge whether this difference is
statistically significant or not.

1 http://openmv.net/info/systematic-method
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More readings

You can read more about box plots in the paper by Hadley Wickham and Lisa Stryjewsk!?. It
summarizes variations of this plot, such as the violin plot, and two-dimensional versions of it. It is a
power summary plot that has been around since 1970.

1.6 Relational graphs: scatter plots

This is a plot many people are comfortable using. It helps you understand the relationship between
two variables - a bivariate plot - as opposed to the previous charts that are univariate. A scatter plot is
a collection of points shown inside a box formed by two axes at 90 degrees to each other. The marker’s
position is located at the intersection of the values shown on the horizontal (x) axis and vertical (y) axis.

The unspoken intention of a scatter plot is usually to ask the reader to draw a causal relationship
between the two variables. However, not all scatter plots actually show causal phenomena, as the
figure below tries to convince you:
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This source code generates similar, but not identical, figures to those shows here in the text.

— - scatter-plot-example.R
# Plot of temperature vs vapour pressure

data_file = "http://openmv.net/file/distillation-tower.csv"
distillation = read.csv(data_file)

plot (distillation$Temp9,
distillationS$VapourPressure,
xlab="Temperature (F)",

ylab="Vapour pressure (kPa)")

S
U

4
#

4

# vs kg/m":

N 50

white.hairs = round(rnorm(N,

mean=500,

(continues on next page)

12 https: //vita.had.co.nz/papers/boxplots.pdf
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(continued from previous page)

sd=150))
bone.mineral.density = -0.25 % white.hairs + 1550 + rnorm(N, mean=0, sd=25)

plot (white.hairs, bone.mineral.density,
xlab = "Number of white hairs per square inch of scalp",

ylab = "Bone mineral density (kg/m"3) [measure of osteoporosis]")

The equivalent code in Python:

IHport Tumpy &5 TP scatter-plot-example.py

import pandas as pd
import matplotlib.pyplot as plt

# Plot of temperature vs vapour pressure

data_file = "http://openmv.net/file/distillation-tower.csv"

distillation = pd.read_csv(data_file)

ax = distillation.plot.scatter (x="Temp9",
y="VapourPressure",
marker="o", s=20)

ax.set_xlabel ("Temperature (F)")

ax.set_ylabel ("Vapour pressure (kPa)")

plt.show ()

# Plot of white hairs vs BMD

# Dsteoporosis (fake) data: number of white

# hairs per square inch vs bone mineral

# density (measurement of osteoporosis)

# vs kg/m*3 (1500 kg/m3 is typical)

N = 50

white_hairs = np.random.normal (loc=500, scale=150, size=N)

bone_mineral_density = -0.25 % white_hairs + 1550 + np.random.normal (loc=0, scale=25, size=N)

fig2, ax2 = plt.subplots(nrows=1, ncols=1)

ax2.plot (white_hairs, bone_mineral_density, "o", ms=10)

ax2.set_xlabel ("Number of white hairs per square inch of scalp")
ax2.set_ylabel ("Bone mineral density (kg/m$73$) [measure of osteoporosis]")

plt.show()

Strive for graphical excellence by doing the following:
* Make each axis as tight as possible.

* Avoid heavy grid lines.

* Use the least amount of ink.

* Do not distort the axes.

There is an unfounded fear that others won’t understand your 2D scatter plot. Tufte (Visual Display of
Quantitative Information, p 83) shows that there are no scatter plots in a sample (1974 to 1980) of U.S.,
German and British dailies, despite studies showing that 12-year-olds can interpret such plots:
Japanese newspapers frequently use them.

You will see this in industrial settings as well. The next time you go into an industrial control room (or
look carefull at some screens in online videos), try finding any scatter plots. The audience is not to
blame: it is the producers of these charts who assume the audience is incapable of interpreting them.

Note: Assume that if you can understand the plot, so will your audience.

Further improvements can be made to your scatter plots. For example, extend the frames only as far as

12 Chapter 1. Visualizing Process Data



Release 10d109

your data:

apour pressure (kPa)
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You can add box plots and histograms to the side of the axes to aide interpretation:
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Add a third variable to the plot by adjusting the marker size, and add a fourth variable with the use of

colour:

1.6. Relational graphs: scatter plots
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, shows data until 2007 for:

the size of each data point is proportional to the country’s population;
the marker colour shows life expectancy at birth (years).

The GapMinder website allows you to “play” the graph over time, effectively adding a

So 5 dimensions in a 2D surface. A 6th dimension cab be added if using technology such as

VR glasses, to create a 3rd dimension, to display another variable from the data set.

Use the hyperlink above to see how richer countries move towards lower fertility and

higher income over time.

1.7 Tables as a form of data visualization

A data table, or a spreadsheet, is an efficient format for comparative data analysis on categorical

objects. Usually, the items being compared are placed in a column, while the categorical objects are in

the rows. The quantitative value is then placed at the intersection of the row and column, called the

cell. The following examples demonstrate data tables.

This table compares monthly payments for buying or leasing various cars (categories). The first two

columns are being compared; the other columns contain additional, secondary information.

13 https://yint.org/gapminder-example
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Bank loan Monthly Minimum Total interest Monthly
monthly lease |downpayment paid over 48 insurance
payments payment for lease months payment
Ford Fusion 552 395 0 2,529 180
Honda Civic 538 424 0 2,466 236
Mazda 3 506 478 1,000 2,318 251
Toyota Yaris 435 490 1,000 1,992 198
VW Golf 596 550 2,500 2,730 244

The next table compares defect types (number of defects) for different product grades (categories).

Total defects A B c D E
A4636 131 a7 21 28 45
A2524 86 20 24 21 1 20
A3T13 75 17 13 18 27
A4452 73 5 33 17 18
A4088 72 14 16 12 2 28
A2103 68 14 13 14 1 26
A2156 68 16 13 19 2 18
A3681 66 12 16 9 1 28
A1366 50 11 15 12 12
A2610 39 5 7 12 15
Total 728 151 171 162 7 237

This particular table raises more questions:

e Which defects cost us the most money?

¢ Which defects occur most frequently? The table does not contain any information about production

rate. For example, if there were 1850 lots of grade A4636 (first row) produced, then defect A occurs
at a rate of 37/1850 = 1/50. And if 250 lots of grade A2610 (last row) were produced, then, again,
defect A occurs at a rate of 1/50. Redrawing the table on a production-rate basis would be useful if
we are making changes to the process and want to target the most problematic defect.

If we are comparing a type of defect over different grades, then we are now comparing down the
table, instead of across the table. In this case, the fraction of defects for each grade would be a more
useful quantity to display.

If we are comparing defects within a grade, then we are comparing across the table. Here again, the
fraction of each defect type, weighted according to the cost of that defect, would be more
appropriate.

Three common pitfalls to avoid:
1. Awvoid using pie charts when tables will do.

Pie charts are tempting when we want to graphically break down a quantity into components. I
have used them erroneously myself (here is an example on a website that I helped with:
http://www.macc.mcmaster.ca/gradstudies.php). We won’t go into details here, but I strongly
suggest you read the convincing evidence of Stephen Few in: “Save the pies for dessert”!4. The key
problem is that the human eye cannot adequately decode angles; however, we have no problem
with linear data.

2. Awoid arbitrary ordering along the first column; usually, alphabetically or in time order is better.

4 https: //www.perceptualedge.com/articles/08-21-07.pdf
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Listing the car types alphabetically is trivial: instead, list them by some other third criterion of
interest, perhaps minimum down payment required, typical lease duration, or total amount of
interest paid on the loan. That way you get some extra context to the table for free.

3. Awvoid using excessive grid lines.

Tabular data should avoid vertical grid lines, except when the columns are so close that mistakes

will be made. The human eye will use the visual white space between the numbers to create its own

columns.
Total defects

A4636 131
A2524 86
A3713 75
A4452 73
A4088 72
A2103 68
A2156 68
A3681 66
A1366 50
A2610 39

Total 728

A
37
20
17
5
14
14
16
12
11
5
151

B
21
24
13
33
16
13
13
16
15
7
171

c
28
21
18
17
12
14
19

9
12
12

162

- N == N

E
45
20
27
18
28
26
18
28
12
15

237

Total defects A B Cc D E

A4636 131 a7 21 28 45
A2524 86 20 24 21 1 20
A3713 75 17 13 18 27
A4452 73 5 33 17 18
A4088 72 14 16 12 2 28
A2103 68 14 13 14 1 26
A2156 68 16 13 19 2 18
A3681 66 12 16 9 1 28
A1366 50 11 15 12 12
A2610 39 5 7 12 15

Total 728 151 171 162 7 237

To wrap up this section is a demonstration of tabular data in a different format, based on an idea of
Tufte in The Visual Display of Quantitative Information, p. 158. Here we compare the corrosion resistance

and roughness of a steel surface for two different types of coatings, A and B.

A layout that you expect to see in a standard engineering report:

Product Corrosion resistance Surface roughness
Coating A CoatingB Coating A Coating B
K135 0.30 0.22 30 42
K136 0.45 0.39 86 31
P271 0.22 0.24 24 73
P275 0.40 0.44 74 52
S561 0.56 0.36 70 75
S567 0.76 0.51 63 70

And the layout advocated by Tufte:

16
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Note how the slopes carry the information about the effect of changing the coating type. The
rearranged row ordering shows these changes as well. This idea is effective for two treatments but
could be extended to three or four treatments by adding extra “columns”. Only the extremes are
numbered, but every point could be numbered if the values are also required by the readers.

1.8 Topics of aesthetics and style

We won't cover these topics, but Tufte’s books (page 2) contain remarkable examples that discuss
effective use of colour for good contrast, varying line widths, and graph layout (e.g. use more
horizontal than vertical - an aspect ratio of about 1.4 to 2.0; and flow the graphics into the location in
the text where discussed).

1.8.1 Data frames (axes)

Frames are the basic containers that surround the data and give context to our numbers. Here are
some tips:

1. Use round numbers.

2. Generally, tighten the axes as much as possible, except ...

3. When showing comparison plots, all axes must have the same minima and maxima.

1.8. Topics of aesthetics and style
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1.8.2 Colour

Colour is very effective in all graphical charts. However, you must bear in mind that your readers
might be colour-blind, or the document might be read from a grayscale printout, or viewed on an
electronic device where colours are shown differently than you might intend.

Note also that a standard colour progression does not exist. We often see dark blues and purples
representing low numbers and reds the higher numbers, with greens, yellows and orange in-between.
There are several such colour schemes!” - there isn’t a universal standard. The only safest colour
progression is the grayscale axis, ranging from black to white at each extreme: this satisfies both
colour-blind readers and users of your grayscale printed output.

See the section on scatter plots (page 13) for an example of the effective use of colour.

1.9 General summary: revealing complex data graphically

There is no generic advice that applies in every instance. These tips are useful, though, in most cases:

¢ If the question you want answered is causality, then show causality (the most effective way is with
bivariate scatter plots). If trying to answer a question with alternatives, show comparisons (with
tiles of plots or a simple table).

* Words and graphics belong together. Add labels to plots for outliers, and explain interesting points.
Add equations and even small summary tables on top of your plots. Remember that a graph should
be like a paragraph of text, not necessarily just a graphical display of numbers that you discuss later
on.

* Avoid obscure coding on the graph. Don’t label points as “A”, “B”, “C”, .... and then put a legend:
“A: grade TK133”, “B: grade RT231”, “C: grade TK134”. Just put the labels directly on the plot.

¢ Do not assume your audience is ignorant and won’t understand a complex plot. Conversely, don’t
try to enliven a plot with decorations and unnecessary graphics (flip through a copy of almost any
weekly news magazine for examples of this sort of embellishment). As Tufte mentions more than
once in his books, “If the statistics are boring, then you've got the wrong numbers.”. The graph should
stand on its own.

* When the graphics involve money and time, make sure you adjust the money for inflation.

* Maximize the data-ink ratio = (ink for data) / (total ink for graphics). Maximizing this ratio, within
reason, means you should (a) eliminate nondata ink and (b) erase redundant data-ink.

¢ Maximize data density. Humans can interpret data displays!® of around 100 data points per
centimeter (250 data points per linear inch) and around 10000 per square centimeter (60000 data
points per square inch).

15 https: //en.wikipedia.org/wiki/Color_scheme
16 https: //www.edwardtufte.com/bboard / g-and-a-fetch-msg?msg_id=00010R
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1.10 Exercises

Question 1

The data shown here are the number of visits to a university website for a particular statistics course.

There are 90 students in the class.

180
120 Visits M’\, 106
60

18-Jan 25-Jan 1-Feb 8-Feb

Visits

P SN
4-Jan 11-Jan
1. What are the names (type) of the 2 plots shown?

2. List any 2 interesting features in these data.

Solution

1. The plots are a time-series plot and a sparkline. The sparkline shows exactly the same data, just a

more compact form (without the labelling on the axes).

2. Features shown in the data are:
* A noticeable weekly cycle; probably assignments are due the next day!
* A sustained, high level of traffic in the first week February - maybe a midterm test.

¢ Some days have more than 90 visits, indicating that students visit the site more than once per
day, or due to external visitors to the site.
Question 2

What are the names of the axes on a bar plot?

Solution

The category axis and value axis.

Question 3

Which types of features can can the human eye easily pick out of a time series plot?

Solution

Features such as sinusoids, spikes, gaps (missing values), upward and downward trends are quickly

picked out by the human eye, even in a poorly drawn plot.
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Question 4

Why is the principle of minimizing “data ink” so important in an effective visualization? Give an
scientific or engineering example of why this important.

Solution

It reduces the time or work to interpret that plot, by eliminating elements that are non-essential to the
plot’s interpretation. Situations which are time or safety critical are examples, for example in an
operator control room, or medical facility (operating room).

Question 5

Describe what the main difference(s) between a bar chart and a histogram are.

Solution

The solution is taken directly from:
https://www.forbes.com/sites/naomirobbins/2012/01/04/a-histogram-is-not-a-bar-chart/

¢ Histograms are used to show distributions of variables while bar charts are used to compare
variables.

¢ Histograms plot quantitative data with ranges of the data grouped into bins or intervals while bar
charts plot categorical data.

* Bars can be reordered in bar charts but not in histograms.

¢ There are no spaces between the bars of a histogram since there are no gaps between the bins. An
exception would occur if there were no values in a given bin but in that case the value is zero rather
than a space. On the other hand, there are spaces between the variables of a bar chart.

¢ The bars of bar charts typically have the same width. The widths of the bars in a histogram need not
be the same as long as the total area is one hundred percent if percents are used or the total count if
counts are used. Therefore, values in bar charts are given by the length of the bar while values in
histograms are given by areas.

Question 6

Write out a list of any features that can turn a plot into a poor visualization. Think carefully about
plots you encountered in textbooks and scientific publications, or the lab reports you might have
recently created for a university or college course.

20 Chapter 1. Visualizing Process Data


https://www.forbes.com/sites/naomirobbins/2012/01/04/a-histogram-is-not-a-bar-chart/

Release 10d109

Question 7

This question is an extension to visualizing more than 3 variables. Investigate on your own the term
“scatterplot matrix”, and draw one for the Food texture data set!”. See the car library in R to create an
effective scatterplot matrix with the scatterplotMatrix function. List some bullet-points that

interpret the plot.
Solution
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R code

Iibrary (car)
data_file = 'http://openmv.net/file/food-texture.csv'
food <- read.csv(data_file)

# Hide the smoother and bounds

scatterplotMatrix (food[,2:6]

From this plot we see histograms of the 5 univariate distributions on the diagonal plots; the
off-diagonal plots are the bivariate correlations between each combination of variable. The trend line
(solid light green) shows the linear regression between the two variables. The lower diagonal part of
the plot is a 90 degree rotation of the upper diagonal part. Some software packages will just draw
either the upper or lower part.

From these plots we quickly gain an insight into the data:

* Most of the 5 variables have a normal-like distribution, except for Crispy, but notice the small
notches on the middle histogram: they are equally spaced, indicating the variable is not continuous;

17 http://openmv.net/info/food-texture
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it is quantized'®. The Fracture variable also displays this quantization.

There is a strong negative correlation with oiliness and density: oilier pastries are less dense (to be
expected).

There is a positive correlation with oiliness and crispiness: oilier pastries are more crisp (to be
expected).

There is no relationship between the oiliness and hardness of the pastry.

There is a negative correlation between density and crispiness (based on the prior relationship with
01i1): less dense pastries (e.g. more air in them) and crispier.

There is a positive correlation between Density and Fracture. As described in the dataset file,
Fracture is the angle by which the pastry can be bent, before it breaks; more dense pastries have a
higher fracture angle.

Similarly, a very strong negative correlation between Crispy and Fracture, indicating the
expected effect that very crispy pastries have a low fracture angle.

The pastry’s hardness seems to be uncorrelated to all the other 4 variables.

Question 8

Us
1.
2.

So
1.

ing the Website traffic data set'
Create a chart that shows the variability in website traffic for each day of the week.

Use the same data set to describe any time-based trends that are apparent.

lution

A suitable chart for displaying variability on a per-day basis is the boxplot, one box for each day of
the week. This allows you to see between-day variation when comparing the boxes side by side, and
get an impression of the variability within each variable, by examining how the box’s horizontal lines
are spread out (25th, 50th and 75th percentiles).

. A box plot is an effective way to summarize and compare the data for each day of the week.

R
web = read.csv('http: openmv.net/file web51:g9€?afflc.csv')

# Re—order the factors in this order
day.names = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday","Thursday", "Friday" )
days = factor (web$DayOfWeek, level=day.names)

boxplot (webS$Visits ~ days)

18 https://en.wikipedia.org/wiki/Quantization_(signal_processing)
19 http://openmv.net/info/website-traffic
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The box plot shows:

* Much less website traffic on Saturdays and Sundays, especially Sunday which has less spread
than Saturday.

* Visits increase during the weekday, peaking on Wednesday and then dropping down by Friday.
¢ All week days seem to have about the same level of spread, except Friday, which is more variable.
* This is a website of academic interest, so these trends are expected.

3. A time-series plot of the data shows increased visits in September and October, and declining visits
in November and December. This coincides with the phases of the academic term. A plot of the
total number of visits within each month will show this effect clearly. The lowest number of visits
were recorded in late June and July.
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The best way to draw the time-series plot is to use proper time-based labelling on the x-axis, but we
won't cover that topic here. If you are interested, read up about the xt s package (see the R tutorial®’)
and it’s plot command. See how it is used in the code below:

R .cod
web = read.csv('http://openmv.net/file web51tef?raff1c.csv')

layout (matrix(c(1,2), 1, 2))

plot (web$Visits, type="o")

# A better plot using the xts library

library (xts)

date.order = as.Date(web$SMonthDay, format=" %B %d")
web.visits = xts(web$Visits, order.by=date.order)

plot (web.visits, major.format="%b")

Question 9

Load the room temperature21 dataset into R, Python or MATLAB, or whichever software tool you
prefer to plot with.

1.
2.
3.

Plot the 4 trajectories, FrontLeft, FrontRight, BackLeft and BackRight on the same plot.
Comment on any features you observe in your plot.

Be specific and describe how sparklines of these same data would improve the message the data is

showing.

20 https://learnche.org/4C3/Software_tutorial
21 http: // openmv.net/info/room-temperature
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Solution

1. You could use the following code to plot the data:

data_file = "http://openmv.net/file IOOﬂ*teﬁpg%ggdre.CSV'
roomtemp <- read.csv(data_file)

summary (roomtemp)

ylim = c (290, 300)

plot (roomtempSFrontLeft,
type='1",
col="blue",
ylim=c (290, 300),
xlab="Sequence order",
ylab="Room temperature [K]")
lines (roomtempSFrontRight,
type='b'",
pch='o",
col="blue")
lines (roomtempS$BackLeft,
type='1",
col="black")
lines (roomtemp$BackRight,

type='b',
pch='o",
col="black")

legend (20, 300,
legend=c ("Front left",
"Front right",

"Back left",
"Back right"),
col=c("blue", "blue",
"black", "black"),

lwd=2,
pch=c(NA, "o", NA, "o"))
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A sequence plot of the data is good enough, though a time-based plot is better.

2. e Oscillations, with a period of roughly 48 to 50 samples (corresponds to 24 hours) shows a daily
cycle in the temperature.

¢ All 4 temperatures are correlated (move together).

¢ There is a break in the correlation around samples 50 to 60 on the front temperatures (maybe a
door or window was left open?). Notice that the oscillatory trend still continues within the offset
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region - just shifted lower.

* A spike up in the room’s back left temperature, around sample 135.

3. The above plot was requested to be on one axis, which leads to some clutter in the presentation.

Sparklines show each trajectory on their own axis, so it is less cluttered, but the same features

would still be observed when the 4 tiny plots are stacked one on top of each other.

If you looked around for how to generate sparklines in R you may have come across this website?.
Notice in the top left corner that the sparklines function comes from the YaleToolkit, which is
an add-on package to R. We show how to install packages in the tutorial®. Once installed, you can

try out that sparklines function:

¢ First load the library: 1ibrary (YaleToolkit)

¢ Then see the help for the function: help (sparklines) to see how to generate your sparklines

Question 10

Load the six point board thickness?* dataset, available from datasets website.

1. Plot a boxplot of the first 100 rows of data to match the figure in these notes (page 9)

2. Explain why the thick center line in the box plot is not symmetrical with the outer edges of the box.

Solution

1. The following code will load the data, and plot a boxplot for the first 100 rows:

data_file = Thttp://openmv.net/file) s;x—coiﬁ:ggggra—thlckncss.csv'

boards <- read.csv(data_file)
summary (boards)

plot (boards[1:100,2], type='1l")
plot (boards[1:100,5], type='l")
first100 <- boards([1:100, 2:7]

# Ignore the first date/time col

boxplot (first100, ylab="Thickness

22 https:// cran.r-project.org/web/packages/ YaleToolkit/
23 https://learnche.org/4C3 /Software_tutorial/Extending_R_with_packages
24 http: // openmv.net/info/six-point-board-thickness
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2. The thick center line on each boxplot is the median (50th percentile) of that variable. The top and
bottom edges of the box are the 25th and 75th percentile, respectively. If the data are from a
symmetric distribution, such as the ¢ or normal distribution, then the median should be
approximately centered with respect to those 2 percentiles. The fact that it is not, especially for
position 1, indicates the data are skewed either to the left (median is closer to upper edge) or the the
right (median closer to the lower edge).

Question 11

Read the short, clearly written article by Stephen Few on the pitfalls of pie charts: Save the pies for

f25

dessert, https:/ /www.perceptualedge.com/articles/08-21-07.pdf*. The article presents an

easy-to-read argument against pie charts that will hopefully convince you.

Here’s a great example that proves his point?® from the Canada Revenue Agency.

Question 12

Enrichment:

* Watch this 20 minute video® that shows how a 2-dimensional plot comes alive to show 5
dimensions of data. What are the 5 dimensions?

e A condensed version from this, 4 minute YouTube video®® shows Hans Rosling giving a new
perspective on the same data. This Economist article?” has some interesting background on Dr.
Rosling, as does this page, giving a selection of his work™.

Video for
this %5 https: // www.perceptualedge.com/articles /08-21-07.pdf
. % https: //www.canada.ca/en/revenue-agency/corporate/about-canada-revenue-agency-cra/individual-income- tax-return-statistics.

section. html

27 https: //www.ted.com /talks /hans_rosling_the_best_stats_you_ve_ever_seen

28 https: //www.youtube.com /watch?v=jbkSRLYSojo

2 https: // www.economist.com/ technology-quarterly/2010/12/11/making-data-dance

30 https: //www.economist.com/babbage/2010/12/09 /hans-roslings-greatest-hits
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CHAPTER 2

| UNIVARIATE DATA ANALYSIS

2.1 Univariate data analysis in context

This section gives a starting idea to the general area of data analysis. We cover concepts from
univariate data analysis shown in the pictorial outline below. This section is only a review of these
concepts for one single variable. If you have more than one variable, you can repeat the analysis for
each one. Later, in the multivariate chapter (page 315), we learn how to extract information from
multiple variables at the same time.

Some introductory statistics textbooks, for more detailed background, are recommend further down.

i 2.1.1 Usage examples

Video for The material in this section is used whenever you want to learn more about a single variable in your

this data set. For example:
section. o Co-worker: Here are the final output values, on a scale from 0 to 100%, from a batch system for the

last 3 years (1256 data points).
— What sort of distribution do the data have?

- Yesterday our output value was less than 50%, what are the chances of that happening under
typical conditions?

* Yourself: We have historical failure rate data for certain equipment in our factories. What is the
probability that 3 of the same type of equipment will fail this year?

® Manager: We have 2 duplicate reactors. Does reactor 1 have better final product purity, on average,
than reactor 2?

¢ Colleague: What does the 95% confidence interval for the density of our powder ingredient really
mean?

29
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2.1.2 What we will cover

All about variability l

Histograms and probability

+| Distributions

Binary Uniform Normal t Poisson Chisquared

Review of topics related to
univariate statistics

Central limit theorem ]

Importance of independence ]

With reference data

[ Without reference data

Testing for differences using confidence
intervals

Paired tests

2.2 References and readings

Any standard statistics text book will cover the topics from this part of the book in much greater depth
than these notes. Some that you might refer to:

1. Recommended: Box, Hunter and Hunter, Statistics for Experimenters, Chapter 2.
2. Hodges and Lehmann, Basic Concepts of Probability and Statistics.
3. Hogg and Ledolter, Engineering Statistics.

4. Montgomery and Runger, Applied Statistics and Probability for Engineers.

2.3 What is variability?

Life is pretty boring without variability, and this book, and almost all the field of statistics would be
unnecessary if things did not naturally vary.

Novaﬂab”ty
17501
1700}
1650
1600}
0 100 200 300 400 500

Fortunately, we have plenty of variability in the recorded data from our processes and systems:

* Raw material properties are not constant.
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¢ Unknown sources, often called “error” (note that the word error in statistics does not have the usual
negative connotation from English). These errors are all sources of variation which our imperfect
knowledge of the process cannot account for.

1740 Sqme varlat|9n
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* Measurement and sampling variability: sensor drift, spikes, noise, recalibration shifts, errors in our
sample analysis and laboratory equipment.

A bit more variation
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¢ Production disturbances:
- external conditions change, such as ambient temperature, or humidity, and
- pieces of plant equipment break down, wear out and are replaced.

1740 More variation, spikes and other real phenomena
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¢ Feedback control systems introduce variability in your process, in order to reduce variability in
another part of the process. Think of what a feedback control system (page 33) does. See page 222 or
page 879 of the freely available textbook by Dr. Thomas Marlin® for visual illustrations.

* Operating staff: introduce variability into a process in feedback manner (i.e. they react to process
upsets) or in a feed-forward manner, for example, to preemptively act on the process to counteract a
known disturbance. By doing so they introduce variability into a process.

31 http://pc-textbook.mcmaster.ca
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All this variability, although a good opportunity to keep many of use employed, comes at a price as
described next.

2.3.1 The high cost of variability in your final product

Assertion
Customers expect both uniformity and low cost when they buy your product. Variability defeats
both objectives.

Three broad outcomes are possible when you sell a highly variable product:

1. The customer may be totally unable to use your product for the intended purpose. Imagine a food
ingredient such as fresh milk, or a polymer with viscosity that is too high, or a motor oil with
unsuitable properties that causes engine failure.

2. Your product leads to poor performance. The user must compensate for the poor properties through
additional cost: more energy will be required to work with a polymer whose melting point is higher
than expected, longer reaction times will be required if the catalyst purity is not at specification.

3. Your brand is diminished: your products, even though acceptable will be considered with suspicion
in the future.

An extreme example was the food poisoning and deaths that occurred due to the listeriosis
outbreak at Maple Leaf Foods, Canada in 2008. The bacterial count in food products is always
non-zero, however the established tolerance limits were exceeded during this outbreak.

Another example was the inadvertent acceleration that occurred in some Toyota car models in
2010. It is still uncertain whether this was manufacturer error or driver error.

In addition to the risk of decreasing your market share (see the above 3 points), variability in your
product also has these costs:

1. Inspection costs: to mitigate the above risks you must inspect your product before you ship it to
your customers. It is prohibitively expensive and inefficient to test every product (known as
“inspecting quality into your product”). A production line with low variability on the other hand,
requires less inspection of every product.

The pharmaceutical industry is well known to be inefficient in this respect, with terms such as
“100% inspection” and even “200% inspection”. Furthermore, some types of inspection are
destructive, and therefore 100% inspection is not feasible.

2. Off-specification products: must be reworked, disposed of, or sold at a loss or much lower profit.
These costs are ultimately passed onto your customers, costing you money.

Note: the above discussion assumes that you are able to quantify product quality with one or more
univariate quality metrics and that these metrics are independent of each other. Quality is almost
always a multivariate attribute of the product. We will discuss the use of multivariate methods (page 315)
to judge product quality later.
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2.3.2 The high cost of variability in your raw materials

Turning the above discussion around, with you on the receiving end of a highly variable raw material:

¢ If you do not implement any sort of process control system, then any variability in these raw

materials that you receive and process is manifest as variability in your final product. This usually
shows up in proportion: higher variability in the inputs results in higher variability in the product
quality.

Raw Quality
mater:als) (Openloop)| targets >
Process
Raw Quality
materials targets <
> r
Process

Feedback control

¢ Even if you do take feedback or feed-forward corrective control: you have to incur additional cost,

since you have to process materials that are not to specification: this will require energy and/or
time, reducing your profit due to the supplier’s raw material variability.

Note: Feedback control around a given set point can be seen as introducing additional variation into
a process to counteract other sources of variation (called disturbances in the process control lingo).
This is done with the hope of reducing the output variability.

2.3.3 Dealing with variability

So, how do we make progress despite this variability? This whole book, and all of statistical data
analysis, is about variability:

in the data visualization section (page 1) we gave some hints how to plot graphics that show the
variability in our process clearly

in this chapter we learn how to quantify variability and then compare variability
later we consider how to construct monitoring charts (page 109) to track variability

in the section on least squares modelling (page 151) we learn how variation in one variable might
affect another variable

2.3. What is variability? 33
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o with designed experiments (page 231) we intentionally introduce variation into our process to learn
more about the process (e.g. so that we can optimize our process for improved profitability); and

* and in the latent variable modelling (page 315) section we learn how to deal with multiple variables,
simultaneously extracting information from the data to understand how variability affects the
process.

2.4 Histograms and probability distributions

The previous section (page 30) has hopefully convinced you that variation in a process is inevitable. This
section aims to show how we can visualize and quantify any variability in a recorded vector of data.

A histogram is a summary of the variation in a measured variable. It shows the number of samples that
occur in a category: this is called a frequency distribution. For example: number of children born,
categorized against their birth gender: male or female.

1400
|

2739)

1000
|

Number of children (N
600
|

0 200
1

Male Female
Children born in Hamilton, April 2009, by gender

The raw data in the above example was a vector that consisted of 2739 text entries, with 1420 of them
as Male and 1319 of them as Female. In this case Female and Male represent the two categories.

Histograms make sense for categorical variables, but a histogram can also be derived from a
continuous variable. Here is an example showing the mass of cartons of 1 kg of flour. The continuous
variable, mass, is divided into equal-size bins that cover the range of the available data. Notice how
the packaging system has to overfill each carton so that the vast majority of packages weigh over 1 kg
(what is the average package mass?). If the variability in the packaging system could be reduced - the
spread of the data made narrower - then the histogram can be shifted to the left, thereby reducing
overfill.
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Histogram of data

Q
@
Q4
S ©
o
Te)
]
<
o
Q
(=2
g 29
[$]
©
Q
k)
I3
E
2 87
od — [E—
[ T T T T T 1
950 1000 1050 1100 1150 1200 1250

Mass [g] of each package

histog{iyfnormal7distribution.R
10

500 [y distributed poit

I
# with a mean of

# Create no

1100 and standard deviation
# of 50 units.
data rnorm (500,
hist (data,

xlab="Mass

= mean=1100, sd=50)

[g] of each package",

ylab="Number of packages (N=500)")

_ , _ histogram—normal-distribution.
Create 500 normally distributed Do?ﬁ?s Py

1100 and

# with a mean of standard deviation

# of 50

import numpy as np
import matplotlib.pyplot as plt

N = 500
values = np.random.normal (loc=1100,

scale=50,

size=N)
plt.hist (values, color="white", bins=8)
plt.xlabel ("Mass [g] of each package")
plt.ylabel ("Number of packages (N={/)".format (N))
plt.show()

Try creating a fictitious histogram for each of the following situations:
¢ The grades for a class for a really easy test.
® The numbers thrown from a 6-sided die.

¢ The annual income for people in your country.

* Analytical measurements taken in a laboratory, by the same person or computerized process.

In preparing the above histograms, what have you implicitly inferred about time-scales? These

histograms show the long-term distribution (probabilities) of the system being considered. This is why

concepts of chance and random phenomena can be use to described systems and processes. Probabilities

can be used to describe our long-term expectations. Let us contrast some long-term and short-term

expectations next:

2.4. Histograms and probability distributions

35
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The long-term sex ratio at birth 1.06:1 (boy:girl) is expected in Canada; but a newly pregnant mother
would not know the sex.

The long-term data from a process shows an 85% output yield from our batch reactor; but tomorrow
it could be 59% and the day after that 86%.

We know that a fair die has a 16.67% chance of showing a 4 when thrown, but we cannot predict the
value of the next throw.

Even if we have complete mechanistic knowledge of our process, the concepts from probability and
statistics are useful to summarize and communicate information about past behaviour, and the
expected future behaviour.

Steps to creating a frequency distribution, illustrated with 4 examples, labelled A, B, C, and D.

1.

2.

3.

4.

Decide what you are measuring;:
A. acceptable or unacceptable metal appearance: yes/no
B. number of defects on a metal sheet: none, low, medium, high

C. yield from the batch reactor: somewhat continuous - quantized due to rounding to the closest
integer

D. daily ambient temperature, in Kelvin: continuous values
Decide on a resolution for the measurement axis:
A. acceptable/unacceptable (1/0) code for the metal’s appearance
B. use ascale from 1 to 4 that grades the metal’s appearance
C. batch yield is measured in 1% increments, reported either as 78, 79, 80, 81%, ec.
D. temperature is measured to a 0.05 K precision, but we can report the values in bins of 5K

Report the number of observations in the sample or population that fall within each bin (resolution
step):

A. number of metal pieces with appearance level “acceptable” and “unacceptable” are added up
B. number of pieces with defect level 1, 2, 3, 4 are counted

C. number of batches with yield inside each bin level are calculated

D. number of temperature values inside each bin level are computed

Plot the number of observations in category as a bar plot. If you plot the number of observations
divided by the total number of observations, N, then you are plotting the relative frequency.

A relative frequency, also called density, is sometimes preferred:

we do not need to report the total number of observations, N
it can be compared to other distributions

if N is large enough, then the relative frequency histogram starts to resemble the population’s
distribution

the area under the histogram is equal to 1, and related to probability
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1000 normally distributed values

N = 1000

values = rnorm(N)

hist (values, freg=TRUE, xlab="Random values",
cex.lab=1.5, cex.main=1.8, lwd=2,
cex.sub=1.8, cex.axis=1.8,
ylab=pasteO ("Frequency (N=",N,")"))

hist (values, freg=FALSE, xlab="Random values",
cex.lab=1.5, cex.main=1.8, lwd=2,
cex.sub=1.8, cex.axis=1.8,
ylab="Relative density")

# Compare the two plots: only the y-axis

changes but the general shape remains.

. , . histogram—-area.
# Create 1000 normally distributed points g by

# with mean of 0 and standard deviation of 1.

import numpy as np
import matplotlib.pyplot as plt

N = 1000

values = np.random.normal (loc=0,
scale=1,
size=N)

plt.subplot (1, 2, 1)
plt.hist (values, color="white")
plt.ylabel ("Frequency (N=/{/)".format (N))

plt.subplot (1, 2, 2)

plt.hist (values,
color="white",
# For older matplotlib versions
normed=True,
# Rather, use 'density
#density=True
)

plt.ylabel ("Relative density")

' instead

plt.tight_layout ()
plt.show ()
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i 2.5 Some terminology

Video for e review a couple of concepts that you should have seen in a prior statistical course or elsewhere. If
this unfamiliar, please type the word or concept in a search engine for more background.

section. Population

A large collection of observations that might occur; a set of potential measurements. Some texts
consider an infinite collection of observations, but a large number of observations is good
enough.

Sample

A collection of observations that have actually occurred; a set of existing measurements that we
have recorded in some way, usually electronically.

Batch viscosity for the past 5 years
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In engineering applications where we have plenty of data, we can characterize the population
from all available data. The figure here shows the viscosity of a motor oil, from all batches
produced in the last 5 years (about 1 batch per day). These 1825 data points, though technically a
sample are an excellent surrogate for the population viscosity because they come from such a long
duration. Once we have characterized these samples, future viscosity values will likely follow
that same distribution, provided the process continues to operate in a similar manner.

Distribution

Distributions are used to summarize, in a compact way, a much larger collection of a much larger
collection of data points. Histograms, just discussed above, are one way of visualizing a
distribution. We can also express distributions by a few numerical parameters. See below.

Probability

The area under a plot of relative frequency distribution is equal to 1. Probability is then the
fraction of the area under the frequency distribution curve (also called density curve).

Superimpose a vertical line on your fictitious histograms you drew earlier to indicate:
¢ the probability of a test grades less than 80%;

¢ the probability that the number thrown from a 6-sided die is less than or equal to 2;
¢ the probability of someone’s income exceeding $60000;

e the probability of the measurement exceeding a certain critical value.

Parameter

38 Chapter 2. Univariate Data Analysis
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A parameter is a value that describes the population’s distribution in some way. For example,
the population mean.

Statistic
A statistic is an estimate of a population parameter.
Mean (location)

The mean, or average, is a measure of location of the distribution. For each measurement, z;, in
your sample

1
population mean:  E£{z} =p=— Z x

sample mean: T

I
\
&

where N represents the size of the entire population, and n is the number of samples measured

from the population.

- eipallyfdistributedfvalues.R

several times, to check
iean 1s approximately 0

# Check what the variable contains.

create-normally-distributed-values.py
ributed

1 lly dis

A vector of 50 r

rand f you have

or higher, co

r

der using

H HH T W

statistics' package instead.
import numpy as np
N = 50

x = np.random.normal (size=N)
print (np.mean(x))

# Run the code several t s, to check

# ot

the mean is approximately 0

# Check what the 'x' variable contains.

X

This is only one of several statistics that describes your data: if you told your customer that the
average density of your liquid product was 1.421 g/L, and nothing further, the customer might
assume all lots of the same product have a density of 1.421 g/L. But we know from our earlier
discussion (page 30) that there will be variation. We need information, in addition to the mean, to
quantify the distribution of values: the spread.

Variance (spread)

A measure of spread, or variance, is also essential to quantify your distribution.

; : . _ oy _ 2 1 2
Population variance : ~ V{z} =& {(z — p)’} =0° = N Z (x — p)

1
: ) 2 _ 2
Sample variance : §°=-—— ;_1 (x; — )

Dividing by n — 1 makes the variance statistic, s?, an unbiased estimator of the population
variance, 2. However, in many data sets our value for n is large, so using a divisor of n, which
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you might come across in computer software or other texts, rather than n — 1 as shown here,
leads to little difference.

eidbuted—values—with—variance—parameter.R

spread = 5
x = rnorm(N, sd=spread)

pasteO ('Standard deviation = ',
round (sd(x), 3)

pasteO ('The variance is ="',
round (var (x), 3)

pastelO ('Square root of variance = ',
round (sqgrt (var (x)), 3))

# Run the code several times.

‘ ggutedfvaluesfwithfvariancefparameter.py

\ vector

7z
# rando

e

S

der using the

$ oW

package instead.
import numpy as np

N = 50

spread = 5

x = np.random.normal (loc=0, scale=spread, size=N)

print ("Standard deviation = "\
str(np.std(x)))

print ("The variance is = " +\
str(np.var(x)))

print ("Square root of variance = " +\
str(np.sqgrt (np.var(x))))

# Run the code several times.

The square root of variance, called the standard deviation is a more useful measure of spread: it
is easier to visualize on a histogram and has the advantage of being in the same units of
measurement as the variable itself.

Degrees of freedom

The denominator in the sample variance calculation, n — 1, is called the degrees of freedom. We
have one fewer than n degrees of freedom, because there is a constraint that the sum of the
deviations around Z must add up to zero. This constraint is from the definition of the mean.
However, if we knew what the sample mean was without having to estimate it, then we could
subtract each z; from that value, and our degrees of freedom would be n.

Outliers

Video for Outliers are hard to define precisely, but an acceptable definition is that an outlier is a point that

this is unusual, given the context of the surrounding data. Another definition which is less useful, but

section. nevertheless points out the problem of concretely defining what an outlier is, is this: “An outlier -
I know it when I see it!”

The following 2 sequences of numbers show the number 4024 that appears in the first sequence,
has become an outlier in the second sequence. It is an outlier based on the surrounding context.
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e 4024, 5152, 2314, 6360, 4915, 9552, 2415, 6402, 6261
e 4 61,12,64,4024,52,-8, 67,104, 24
Median (robust measure of location)

The median is an alternative measure of location. It is a sample statistic, not a population
statistic, and is computed by sorting the data and taking the middle value (or average of the
middle 2 values, for even n). It is also called a robust statistic, because it is insensitive (robust) to
outliers in the data.

Note: The median is the most robust estimator of the sample location: it has a breakdown of
50%, which means that just under 50% of the data need to be replaced with unusual values
before the median breaks down as a suitable estimate. The mean on the other hand has a
breakdown value of 1/n, as only one of the data points needs to be unusual to cause the mean to
be a poor estimate. To compute the median in R, use the median (x) function on a vector x.

Governments will report the median income, rather than the mean, to avoid influencing the
value with the few very high earners and the many low earners. The median income per person
is a more fair measure of location in this case.

Median absolute deviation, MAD (robust measure of spread)

A robust measure of spread is the MAD, the median absolute deviation. The name is descriptive
of how the MAD is computed:

mad {z;} = ¢- median {||z; — median {z;} ||} where c = 1.4826

The constant ¢ makes the MAD consistent with the standard deviation when the observations z;
are normally distributed. The MAD has a breakdown point of 50%, because like the median, we
can replace just under half the data with outliers before the MAD estimate becomes unbounded.
To compute the MAD in R, use the mad (x) function on a vector x.

R code

vector of 500 normally distributed

SRS

7
# lor imbers

anda

X <— rnorm(500)

paste0 ('Without any outliers:'")

pastel ('Standard deviation = ', sd(x))
paste0 ('The MAD is = ', mad(x))
print ('These two should agree mostly')

# Run it several times to verify

# two are similar, when they are

# outliers

# Now add a huge outlier:

x[2] <- 9876

pastel ('But now add an outlier..."')
pastel ('+Standard deviation = ', sd(x))
pastel ('+«The MAD is = ', mad(x))

pastel('See how MAD is not affected.')

Enrichment reading: read pages 1 to 8 of “Tutorial to Robust Statistics®*”, PJ] Rousseeuw, Journal of
Chemometrics, 5, 1-20, 1991.

32 https://dx.doi.org/10.1002 /cem.1180050103
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2.6 Binary (Bernoulli) distribution

Systems that have binary outcomes (pass/fail; yes/no) must obey the probability principle that:
p(pass) + p(fail) = 1. That is, the sum of the probabilities of the two possible outcomes must add up to
exactly one. A Bernoulli distribution only has a single parameter, p;, the probability of observing event
1. The probability of the second event is the difference with 1: thatis py = 1 — p;.

An example: a histogram for a system that produces 70% acceptable product, p(pass) = 0.7, could look
like:

100

80

60

40

Percentage of tablets

20

Pass Fail

If each observation is independent of the other, then:

¢ For the above system where p(pass) = 0.7, what is probability of seeing the following sequential
outcomes: pass, pass, pass (3 times in a row)?

(0.7)(0.7)(0.7) = 0.343, about one third
* What is the probability of seeing the sequence: pass, fail, pass, fail, pass, fail?
(0.7)(0.3)(0.7)(0.3)(0.7)(0.3) = 0.0093, less than 1%

Another example: you work in a company that produces tablets. The machine creates acceptable,
unbroken tablets 97% of the time, S0 pacceptable = 0-97, SO Pdefective = 0.03.

¢ In a future batch of 850,000 tablets, how many tablets are expected to be defective? (Most companies
will call this quantity “the cost of waste”.)

850000 x (1 —0.97) = 25500 tablets per batch will be defective

* You take a random sample of n tablets from a large population of N tablets. What is the chance that
all n tablets are acceptable if p is the Bernoulli population parameter of finding acceptable tablets:

Sample size p=95% p=97%

n =10
n = 50
n = 100

¢ Are you surprised by the large reduction in the number of defective tablets for only a small increase
in p? It is for this reason that a well-performing process producing accetable product does not need
to have inspection of every product produced.
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2.7 Uniform distribution

A uniform distribution arises when an observation’s value is equally as likely to occur as all the other
options of the recorded values. The classic example are dice: each face of a die is equally as likely to
show up as any of the other faces. This forms a discrete, uniform distribution.

The histogram for an event with 4 possible outcomes that are uniformly distributed is shown below.
Notice that the sample histogram will not necessarily have equal bar heights for all categories (bins),
especially for small sample sizes.

300
|

250
|

200
|

Number of defects
150
|

50

A B C D

You can simulate uniformly distributed random numbers in most software packages. As an example,
to generate 50 uniformly distributed random integers between 2 and 10, inclusive, in various
languages:

uniform-distribution-example.R

as.integer (runif (50, 2, 11)

# run the code several times

# the r

rs are between 2 and 1

uniform-distribution-example.py

import numpy as np
(np.random.rand(50) = (10 — 2) + 2).round()

run the code several ti

# the numbers are between 2 and 10

A continuous, uniform distribution arises when there is equal probability of every measurement
occurring within a given lower- and upper-bound. This sort of phenomena is not often found in
practice. Usually, continuous measurements follow some other distribution, of which we will discuss
the normal and ¢-distribution next.
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2.8 Normal distribution

Before introducing the normal distribution, we first look at two important concepts: the Central limit
theorem, and the concept of independence. Both concepts are used in important derivations, based on
the normal distribution.

2.8.1 Central limit theorem
The Central limit theorem plays an important role in the theory of probability and in the derivation of
the normal distribution. We don’t prove this theorem here, but we only use the result that:

The average of a sequence of values from any distribution will approach the normal distribution,
provided the original distribution has finite variance.

The condition of finite variance is true for almost all systems of practical interest.

e ™
Any
distribution X X X X ¥ =
with finite | rTake P2 Y TR Y T catculate the
; independent average of these
variance J samples n samples

The critical requirement for the central limit theorem to be true is that the samples used to compute
that average are independent of each together. The average produced from such samples will be more
nearly normal though. Note: we do not require the original data to be normally distributed. This is a
common misconception though.

Imagine a case where we are throwing dice. The distributions, shown below, are obtained when we
throw a die M times and we plot the distribution of the average of these M throws.
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As one sees from the above figures, the distribution from these averages quickly takes the shape of the
so-called normal distribution. As M increases, the y-axis starts to form a peak. Try it yourself:

simulate-CLT.R

N = 500

# Layout the plots in 2 rows and 3
m <- t(matrix(seq(l,6), 3, 2))
layout (m)

# Throw the dice several times
sl <- as.integer (runif (N, 1, 7)
s2 <- as.integer (runif (N, 1, 7)
s3 <-— as.integer(runlf(N 1, 7)
s4 <- as.integer (runif (N, 1, 7)
s5h <-— as.integer(runlf(N 1, 7)
s6 <- as.integer (runif (N, 1, 7)
s7 <-— as.integer(runlf(N 1, 7)
s8 <- as.integer (runif (N, 1, 7)
s9 <- as.integer (runif (N, 1, 7)
s10 <- as.integer (runif(N, 1, 7))

hist (sl, main="", xlab="One throw", breaks=seq(0,6)+0.5)

bins = 8
hist ((sl+s2)/2, breaks=bins,
main="", xlab="Average of two throws")
hist ((sl+s2+s3+s4)/4, breaks=bins,
main="", xlab="Average of 4 throws")
hist ((sl+s2+s3+s4+s5+s6) /6, breaks=bins,
main="", xlab="Average of 6 throws")
bins=12
hist ((sl+s2+s3+s4+s5+s6+s7+s8) /8, breaks=bins,
main="", xlab="Average of 8 throws")

hist ((sl+s2+s3+s4+s5+s6+s7+s8+s9+s10) /10, breaks=bins,

main="", xlab="Average of 10 throws")
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What is the engineering significance of this averaging process (which is really just a weighted sum)?
Many of the quantities we measure are bulk properties, such as viscosity, density, or particle size. We
can conceptually imagine that the bulk property measured is the combination of the same property,
measured on smaller and smaller components. Even if the value measured on the smaller component
is not normally distributed, the bulk property will be as if it came from a normal distribution.

2.8.2 Independence

The assumption of independence is widely used in statistical work and is a condition for using the
central limit theorem.

Note: The assumption of independence means that the samples we have in front of us are randomly
taken from a population. If two samples are independent, there is no possible relationship between
them.

We frequently violate this assumption of independence in engineering applications. Think about these
examples for a while:

* A questionnaire is given to a group of people. What happens if they discuss the questionnaire in
sub-groups prior to handing it in?

We are not going to receive n independent answers, rather we will receive as many
independent opinions as there are sub-groups.

* The rainfall amount, recorded every day, over the last 30 days.

These data are not independent: if it rains today, it can likely rain tomorrow as the weather
usually stays around for some days. These data are not useful as a representative sample of
typical rainfall, however they are useful for complaining about the weather. Think about the
case if we had considered rainfall in hourly intervals, rather than daily intervals.

* The snowfall, recorded on 3 January for every year since 1976: independent or not?
These sampled data will be independent.

¢ The impurity values in the last 100 batches of product produced is shown below. Which of the 3
time sequences has independent values?

In chemical processes there is often a transfer from batch-to-batch: we usually use the same lot of
raw materials for successive batches, the batch reactor may not have been cleaned properly between
each run, and so on. It is very likely that two successive batches (k and k + 1) are somewhat related,
and less likely that batch k and k + 2 are related. In the figure below, can you tell which sequence of
values are independent?
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Sample 3

Sequence 2 (sequence 1 is positively correlated, while sequence 3 is negatively correlated).

¢ We need a highly reliable pressure release system. Manufacturer A sells a system that fails 1 in

every 100 occasions, and manufacturer B sells a system that fails 3 times in every 1000 occasions.
Given this information, answer the following:

The probability that system A fails: p(Agps) = 1/100
The probability that system B fails:p(Braiis) = 3/1000

The probability that both system A and fail at the same time:
p(both A and B fail) = f5 - 125 = 3 x 107°, but only if system A and B are totally independent.

For the previous question, what does it mean for system A to be totally independent of system B?

It means the 2 systems must be installed in parallel, so that there is no interaction between
them at all.

How would the probability of both A and B failing simultaneously change if A and B were not
independent?

The probability of both failing simultaneously will increase.

i 2.8.3 Formal definition for the normal distribution

Video for
this. ) (x —p)
section. — T 942
p(x) 3
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Normal distribution when p=0 and c=1

p(x)
0.3 04

0.1

20

306

0.0

* 1 is the variable of interest
¢ p(z) is the probability of obtaining that value of z
* 1 is the population average for the distribution (first parameter)

* ¢ is the population standard deviation for the distribution, and is always a positive quantity

(second parameter)
Some questions:

1. What is the maximum value of p(z) and where does it occur, using the formula above?

2. What happens to the shape of p(x) as o gets larger ?
3. What happens to the shape of p(z)as ¢ — 07?
4. Fill out this table:

x o p p(x)

1 0

1 1 0

-1 1 0
To calculate the point on the curve p(z) we use the dnorm (. . .) function in R. It requires you specify

the two parameters:

dnorm(x = 0, mean =

# x=1, mu=0, and sigma=1

dnorm(x = 1, mean = 0, sd = 1) # 0.2419707

dnorm(x = -1, mean = 0, sd = 1) # 0.2419707

(continues on next page)
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(continued from previous page)

# This is at a point very far from

dnorm(x = +3, mean = 0, sd = 1)

Some useful points:

® The total area from = —oo to z = 400 is 1.0; we cannot calculate the integral of p(z) analytically.
* o is the distance from the mean, p, to the point of inflection

* The normal distribution only requires two parameters to describe it: ¢z and o

e The area from x = —o to z = ¢ is about 70% (68.3% exactly) of the distribution. So we have a
probability of about 15% of seeing an x value greater than z = ¢, and also 15% of z < —¢

¢ The tail area outside +2¢ is about 5% (2.275 outside each tail)

It is more useful to calculate the area under p(z) from x = —oo to a particular point z. This is called the
cumulative distribution, and is discussed more fully in the next section (page 50).

R code

Gives area

5

for mu=0, si

(=)
Qc
IS

pnorm(l, mean = 0, sd = 1) #

# Spread is wider, bt
f

‘ractional area is t

pnorm(3, mean = 0, sd = 3) # 0.84

You might still find yourself having to refer to tables of cumulative area under the normal distribution,
instead of using the pnorm () function (for example in a test or exam). If you look at the appendix of
most statistical texts you will find these tables, and there is one at the end of this chapter (page 79). Since
these tables cannot be produced for all combinations of mean and standard deviation parameters, they
use what is called standard form.

T; — mean
standard deviation

2

The values of the mean and standard deviation are either the population parameters, if known, or
using the best estimate of the mean and standard deviation from the sampled data.

For example, if our values of z; come from a normal distribution with mean of 34.2 and variance of 55.

Then we could write 2 ~ N(34.2,55), which is short-hand notation of saying the same thing. The
x; — 34.2

V55

This transformation to standard form does not change the distribution of the original z, it only

equivalent z-values for these x; values would be: z; =

changes the parameters of the distribution. You can easily prove to yourself that z is normally
distributed as z ~ N(0.0, 1.0). So statistical tables only report the area under the distribution of a z
value with mean of zero, and unit variance.

This is a common statistical technique, to standardize a variable, which we will see several times.
Standardization takes our variable from = ~ A/ (some mean, some variance) and converts it to

z ~ N(0.0,1.0). It is just as easy to go backwards, from a given z-value and return back to our original
z-value.
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The units of = are dimensionless, no matter what the original units of = were. Standardization also
allows us to straightforwardly compare 2 variables that may have different means and spreads. For
example if our company has two reactors at different locations, producing the same product. We can
standardize a variable of interest, e.g. viscosity, from both reactors and then proceed to use the
standardized variables to compare performance.

Consult a statistical table found in most statistical textbooks for the normal distribution, such as the
one found at the end of this chapter (page 79). Make sure you can firstly understand how to read the
table. Secondly, duplicate a few entries in the table using R. Complete these small exercises by
estimating what the rough answer should be. Use the tables first, then use R to get a more accurate
estimate.

1. Assume z, the measurement of biological activity for a drug, is normally distributed with mean of
26.2 and standard deviation of 9.2. What is the probability of obtaining an activity reading less than
or equal to 30.0?

~B code
5 0%
sigma <-
pnorm(x, mean=mu, sd=sigma)
# Now modify this above to answer the question.

2. Assume z is the yield for a batch process, with mean of 85 g/L and variance of 16 g2.L~%. What

proportion of batch yield values lie between 75 and 95 g/L?

mu <- 85 # g/L R code
sigma <- sqrt(16) # g/L
x.left <- __
area.left.tail <- pnorm(x.left,

mean=mu,

sd=sigma)
x.right <- ____
area.right.tail <- pnorm(x.right,

mean=mu,

sd=sigma)

two areas to get

2.8.4 Checking for normality: using a g-q plot

Often we are not sure if a sample of data can be assumed to be normally distributed. This section
shows you how to test whether the data are normally distributed, or not.

Before we look at this method, we need to introduce the concept of the inverse cumulative distribution
function (inverse CDF). Recall the cumulative distribution is the area underneath the distribution
function, p(z), which goes from —oo to z. For example, the area from —oco to z = —1 is about 15%, as
we showed earlier, and we can use the pnorm () function in R to verify that.

Now the inverse cumulative distribution is used when we know the area, but want to get back to the
value along the z-axis. For example, below which value of z does 95% of the area lie for a standardized
normal distribution? Answer: z = 1.64. In R we use the gnorm (0.95, mean=0, sd=1) to calculate
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this value. The g stands for quantile®’, because we give it the quantile and it returns the z-value: e.g.
gnorm(0.5) gives 0.0.

Q
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On to checking for normality. We start by first constructing some quantities that we would expect for
truly normally distributed data. Secondly, we construct the same quantities for the actual data. A plot
of these 2 quantities against each other will reveal if the data are normal, or not.

1. Imagine we have N observations which are normally distributed. Sort the data from smallest to
largest. The first data point should be the (1/N x 100) quantile, the next data point is the
(2/N x 100) quantile, the middle, sorted data point is the 50th quantile, (1/2 x 100), and the last,
sorted data point is the (IV/N x 100) quantile.

The middle, sorted data point from this truly normal distribution must have a z-value on the
standardized scale of 0.0 (we can verify that by using gnorm (0. 5) ). By definition, 50% of the data
should lie below this mid point. The first data point will be at gnorm (1/N), the second at

gnorm (2/N), the middle data point at gnorm (0.5), and so on. In general, the ith sorted point
should be at gnorm ( (1-0.5) /N), for values of i = 1,2, ..., N. We subtract off 0.5 by convention to
account for the fact that gnorm (1.0) = Inf. So we construct this vector of theoretically expected
quantities from the inverse cumulative distribution function.

N = 10
index seq(l, N)
P = (index - 0.5) / N

P
[1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
theoretical.quantity = gnorm(P)

[1] -1.64 -1.04 -0.674 -0.385 -0.126 0.125 0.385 0.6744 1.036 1.64

2. We also construct the actual quantiles for the sampled data. First, standardize the sampled data by
subtracting off its mean and dividing by its standard deviation. Here is an example of 10 batch
yields (see actual values below). The mean yield is 80.0 and the standard deviation is 8.35. The

33 https: //en.wikipedia.org/wiki/Quantile
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standardized yields are found by subtracting off the mean and dividing by the standard deviation.
Then the standardized values are sorted. Compare them to the theoretical quantities.

vields <— c(86.2, 85.7, 71.9, 95.3, T, 7.4, 68.9, 78.9, 86.9, )
mean.yield <- mean(yields) # 80.0

sd.yield <- sd(yields) # 8.35

yields.z = (yields - mean.yield)/sd.yield

[1] 0.734 0.674 -0.978 1.82 -0.35 -1.04 -1.34 -0.140 0.818 -0.200

yields.z.sorted = sort(yields.z)
[1] -1.34 -1.04 -0.978 -0.355 -0.200 -0.140 0.674 0.734 0.818 1.82

theoretical.quantity # numbers are rounded in the printed output

[1] -1.64 -1.04 -0.674 -0.385 -0.126 0.125 0.385 0.6744 1.036 1.64

3. The final step is to plot this data in a suitable way. If the sampled quantities match the theoretical
quantities, then a scatter plot of these numbers should form a 45 degree line.

plot (theoretical.quantity, yields.z.sorted, type="p")
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A built-in function exists in R that runs the above calculations and shows a scatter plot. The 45 degree
line is added using the ggline (.. .) function. However, a better function that adds a confidence
limit envelope is included in the car library (see the Package Installer menu in R for adding libraries
from the internet).

qggnorm (yields)
ggline (yields)

# or, using the " ‘car’' library

library (car)

qggPlot (yields)
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Using the built-in functions Using the car library
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All the above code together in one script for you to test out:

R code

N =10

index <- seqg(l, N)

P <- (index - 0.5) / N
theoretical.quantity <- gnorm(P)

yields <- c(86.2, 85.7, 71.9, 95.3, 77.1,

71.4, 68.9, 78.9, 86.9, 78.4)
mean.yield <- mean(yields) # 80.0
sd.yield <- sd{(yields) # 8.35

yields.z <- (yields - mean.yield)/sd.yield
yields.z.sorted <- sort (yields.z)

plot (theoretical.quantity,
yields.z.sorted,
type="p")

ggnorm(yields)
ggline (yields)

# or, using the " ‘car’' library

library (car)

qggPlot (yields)

The R plot rescales the y-axis (sample quantiles) back to the original units to make interpretation
easier. We expect some departure from the 45 degree line due to the fact that these are only a sample of
data. However, large deviations indicates the data are not normally distributed. An error region, or
confidence envelope, may be superimposed around the 45 degree line.

The g-q plot, quantile-quantile plot, shows the quantiles of 2 distributions against each other. In fact,
we can use the horizontal axis for any distribution, it need not be the theoretical normal distribution.
We might be interested if our data follow an F-distribution then we could use the quantiles for that
theoretical distribution on the horizontal axis.

We can use the g-q plot to compare any 2 samples of data, even if they have different values of NV, by
calculating the quantiles for each sample at different step quantiles (e.g. 1, 2, 3, 4, 5, 10, 15, .... 95, 96,
97,98, 99), then plot the g-q plot for the two samples. You can calculate quantiles for any sample of
data using the quantile function in R. The simple example below shows how to compare the g-q
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plot for 1000 normal distribution samples against 2000 F'-distribution samples.

ggplot-comparison.R

# 1000 normal values

rand.norm <- rnorm(1000)

# 2000 values om F-distribution
’

fr
rand.f <- rf (2000, df1=200, df=150)

# looks sort of normally distributed

hist (rand.f, freg=FALSE, ylim=c(0, 2.6),
main="Are these data from a normal distribution?",
ylab="Frequency")

# Add the density line on top

lines (density (rand.f))

# But your eye 1is being fooled ...
# See the heavy tail

library (car)

ggPlot (rand.f, distribution="norm")

Are these data from a normal distribution? q-q plot against the normal distribution
0 f = o AR
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Even though the histogram of the F-distribution samples looks normal to the eye (left), the g-q plot
(right) quickly confirms it is definitely not normal, particularly, that the right-tail is too heavy.

2.8.5 Introduction to confidence intervals from the normal distribution

We introduce the concept of confidence intervals here as a straightforward application of the normal
distribution, Central limit theorem, and standardization.

Suppose we have a quantity of interest from a process, such as the daily profit. We have many
measurements of this profit, and we can easily calculate the average profit. But we know that if we
take a different data set of profit values and calculate the average, we will get a similar, but different
average. Since we will never know the true population average, the question we want to answer is:

What is the range within which the true (population) average value lies? E.g. give a range for the
true, but unknown, daily profit.

This range is called a confidence interval, and we study them in more depth later on (page 63). We will
use an example to show how to calculate this range.
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Let’s take n values of this daily profit value, let’s say n = 5.

1. An estimate of the population mean is given by 7 = E Z Z; (we saw this before (page 39))
n <

1 i=n ‘
2. The estimated population variance is s = 1 (z; —T)* (we also saw this before (page 39))
n—1<
l
3. This is new: the estimated mean, 7, is a value that is also normally distributed with mean of ;s and
variance of o2 /n, with only one requirement: this result holds only if each of the z; values are

independent of each other.
Mathematically we write: T ~ N (p, 0 /n).

This important result helps answer our question above. It says that repeated estimates of the mean
will be an accurate, unbiased estimate of the population mean, and interestingly, the variance of
that estimate is decreased by using a greater number of samples, 7, to estimate that mean. This
makes intuitive sense: the more independent samples of data we have, the better our estimate
(“better” in this case implies lower error, i.e. lower variance).

We can illustrate this result as shown below:

Raw data distribution, and sample mean distribution
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The true population (but unknown to us) profit value is $700.
* The 5 samples come from the distribution given by the thinner line: 2 ~ N (y, o)
¢ The 7 average comes from the distribution given by the thicker line: Z ~ A (u,0%/n).

4. Creating z values for each z; raw sample point:
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5. The z-value for T would be:
_ T
o/yn

which subtracts off the unknown population mean from our estimate of the mean, and divides

z

through by the standard deviation for Z. We can illustrate this as:

Raw data distribution, and sample mean distribution
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6. Using the known normal distribution for 7 ~ N/ (u, o2 / n), we can find the vertical, dashed red lines
shown in the previous figure, that contain 95% of the area under the distribution for 7.

7. These vertical lines are symmetrical about 0, and we will call them —c,, and +c,,, where the
subscript n refers to the fact that they are from the normal distribution (it doesn’t refer to the n
samples). From the preceding section on g-q plots we know how to calculate the ¢,, value from R:
using gnorm (1 - 0.05/2), so that there is 2.5% area in each tail.

8. Finally, we construct an interval for the true population mean, y, using the standard form:

—cp < _ z < +cp
—Cn S S S +C’!L
- o/v/n - 2.1)
f—cnﬁ < iz < f-FCn%
LB < I < UB

Notice that the lower and upper bound are a function of the known sample mean, Z, the values for
¢y, which we chose, the known sample size, n, and the unknown population standard deviation, o.

So to estimate our bounds we must know the value of this population standard deviation. This is
not very likely, (I can’t think of any practical cases where we know the population standard
deviation, but not the population mean, which is the quantity we are constructing this range for),
however there is a hypothetical example in the next section (page 59) to illustrate the calculations.
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The t-distribution is required to remove this impractical requirement of knowing the population
standard deviation.

2.9 The t-distribution

Suppose we have a quantity of interest from a process, such as the daily profit. In the preceding
section we started to answer the useful and important question:

What is the range within which the true average value lies? E.g. the range for the true, but
unknown, daily profit.

But we got stuck, because the lower and upper bounds we calculated for the true average, ;1 were a
function of the unknown population standard deviation, . Repeating the prior equation for confidence
interval (page 65) where we know the variance:

T—p
S e =
f_cni < 1% < f-l—Cni
Vn Vn
B < 4 < UB
T—p

which we derived by using the fact that is normally distributed.

o/vn
An obvious way out of our dilemma is to replace o by the sample standard deviation, s, which is
exactly what we will do, however, the quantity f/?/’% is not normally distributed, but is ¢-distributed.
Before we look at the details, it is helpful to see how similar in appearance the ¢ and normal

distribution are: the ¢t-distribution peaks slightly lower than the normal distribution, but it has broader
tails. The total area under both curves illustrated here is 1.0.
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There is one other requirement we have to ensure in order to use the ¢t-distribution: the values that we
sample, z; must come from a normal distribution (carefully note that in the previous section we didn’t
have this restriction!). Fortunately it is easy to check this requirement: just use the g-q plot method
described earlier (page 50). Another requirement, which we had before, was that we must be sure these
measurements, z;, are independent.
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Normal )
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X

So given our n samples, which are independent, and from a normal distribution, we can now say:

Tr— U ¢
s \/ﬁ n—1

2.2)

Compare this to the previous case where our n samples are independent, and we happen to know, by
some unusual way, what the population standard deviation is, o:

T
RN

So the more practical and useful case where z = f/*\/’% ~ t,—1 can now be used to construct an interval

for ;1. We say that z follows the ¢-distribution with n — 1 degrees of freedom, where the degrees of

freedom refer to those from the calculating the estimated standard deviation, s.

Note that the new variable z only requires we know the population mean (y:), not the population
standard deviation; rather we use our estimate of the standard deviation s//n in place of the
population standard deviation.

We will come back to (2.2) in a minute; let’s first look at how we can calculate values from the
t-distribution in computer software.

2.9.1 Calculating the t-distribution

¢ In R we use the function dt (x=..., df=...) to give us the values of the probability density
values, p(z), of the ¢t-distribution (compare this to the dnorm (x, mean=..., sd=...) function
for the normal distribution).

R code

x = 0.0

# Recall, for the normal c

dnorm (x, mean=0, sd=1)

distribution we don't

we do need to say how

# many degrees of freedom we have:
dof <- 8
dt (x, df=dof) # 0.386699

4
#
# ut with fewer and

s

greater degrees of freedom ("dof’).

* The cumulative area from —oo to = under the probability density curve gives us the probability that
values less than or equal to « could be observed. It is calculated in R using pt (g=..., df=...).
For example, pt (1.0, df=8) is 0.8267. Compare this to the R function for the standard normal
distribution: pnorm (1.0, mean=0, sd=1) which returns 0.8413.
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R code

q= 1.0

# Recall, for the normal distribution:

pnorm(q, mean=0, sd=1) # 0.8413447

# For the t-distribution we
#

# specify the degrees of freedom:

¢ And similarly to the gnorm function which returns the ordinate for a given area under the normal
distribution, the function gt (0.8267, df=8) returns 0.9999857, close enough to 1.0, which is the
inverse of the previous example.

R code

p = 0.5

# Recall, for the normal distribution:

gnorm(p, mean=0, sd=1) # 0.0
# For the t-distribution:

dof <- 8

gt (p, df=dof) # 0.0

# other values of probability, p.

i 2.9.2 Using the t-distribution to calculate our confidence interval

Video for Returning back to (2.2) we stated that

this
section.

g,
s~

We can plot the t-distribution for a given value of n — 1, the degrees of freedom. Then we can locate

vertical lines on the z-axis at —¢; and +c¢; so that the area between the verticals covers say 95% of the

total distribution’s area. The subscript ¢ refers to the fact that these are critical values from the

t-distribution.

Then we write:

—c¢p < z < o
—¢ < il < e
. s/v/n 5 (2.3)
T — Ctﬁ < 7 < T+ Ctﬁ
IB < u < UB

Now all the terms in the lower and upper bound are known, or easily calculated.

So we finish this section off with an example. We produce large cubes of polymer product on our
process. We would like to estimate the cube’s average viscosity, but measuring the viscosity is a
destructive laboratory test. So using 9 independent samples taken from this polymer cube, we get the
9 lab values of viscosity: 23, 19, 17, 18, 24, 26, 21, 14, 18.
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If we repeat this process with a different set of 9 samples we will get a different average viscosity. So

we recognize the average of a sample of data, is itself just a single estimate of the population’s average.

What is more helpful is to have a range, given by a lower and upper bound, that we can say the true

population mean lies within.

1.
2.

The average of these nine values is Z = 20 units.
Using the Central limit theorem, what is the distribution from which Z comes?
z ~N (p,0%/n)

This also requires the assumption that the samples are independent estimates of the
population viscosity. We don’t have to assume the z; are normally distributed.

What is the distribution of the sample average? What are the parameters of that distribution?
The sample average is normally distributed as N (11, 0% /n)

Assume, for some hypothetical reason, that we know the population viscosity standard deviation is
o = 3.5 units. Calculate a lower and upper bound for p:

The interval is calculated using from an earlier equation when discussing the normal distribution
(page 56):

g
IB=7— Cn%
=20 — 1.95996 - 35
Vo

=20—-2.286 =17.7
UB =20+ 2.286 = 22.3

We can confirm these 9 samples are normally distributed by using a g-q plot (not shown, but you
can use the code below to generate the plot). This is an important requirement to use the
t-distribution, next.

. Calculate an estimate of the standard deviation.

s =3.81

Now construct the z-value for the sample average and from what distribution does this z come
from?

T—p
s/v/n

Construct an interval, symbolically, that will contain the population mean of the viscosity. Also

It comes the ¢-distribution with n — 1 = 8 degrees of freedom, and is given by z =

calculate the lower and upper bounds of the interval assuming the internal to span 95% of the area
of this distribution.

The interval is calculated using (2.3):

S
LB =T — Ct%
=20 — 2.306004 - 3.81
Vo

=20-2929=17.1
UB = 20 4 2.929 = 22.9

using from R that gt (0.025, df=8) and gt (0.975, df=8), which gives 2.306004
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# Step 0: the raw data R code
viscosity <- c(23, 19, 17, 18,
24, 26, 21, 14, 18)

n <- length(viscosity)
# Step 1:
X.avg <- mean (viscosity)
# Step 5: Verify the data are normal
library (car)
qggPlot (viscosity)
# Step 6:
x.sd <- sd(viscosity)
# Step 7: t-distribution
dof <- n 1
# Step 8:
conf.level <- 0.95
# Can be calc at either
# the lower tail
c.t <- gt(p = (l-conf.level)/2,

df = dof)
# or the upper tail
c.t <- gt(p = 1-(l-conf.level)/2,

df = dof)
LB <- x.avg - c.t x x.sd / sqrt(n)
UB <- x.avg + c.t * x.sd / sqgrt(n)
paste0('The ', round(conf.levelx100, 0),

'% confidence interval is: ')

pasteO('[', round(LB, 1), '; ', round(UB, 1), ']")

Comparing the answers for parts 4 and 8 we see the interval, for the same level of 95% certainty, is
wider when we have to estimate the standard deviation. This makes sense: the standard deviation is
an estimate (meaning there is error in that estimate) of the true standard deviation. That uncertainty
must propagate, leading to a wider interval within which we expect to locate the true population
viscosity, u.

We will interpret confidence intervals in more detail a [ittle later on (page 63).

2.10 Poisson distribution

The Poisson distribution is useful to characterize rare events (number of cell divisions in a small time
unit), system failures and breakdowns, or number of flaws on a product (contaminations per cubic
millimetre). These are events that have a very small probability of occurring within a given time
interval or unit area (e.g. pump failure probability per minute = 0.000002), but there are many
opportunities for the event to possibly occur (e.g. the pump runs continuously). A key assumption is
that the events must be independent. If one pump breaks down, then the other pumps must not be
affected; if one flaw is produced per unit area of the product, then other flaws that appear on the
product must be independent of the first flaw.

Let n = number of opportunities for the event to occur. If this is a time-based system, then it would be
the number of minutes the pump is running. If it were an area/volume based system, then it might be
the number of square inches or cubic millimetres of the product. Let p = probability of the event
occurring: e.g. p = 0.000002 chance per minute of failure, or p = 0.002 of a flaw being produced per

2.10. Poisson distribution 61



Process Improvement Using Data

square inch. The rate at which the event occurs is then given by n = np and is a count of events per
unit time or per unit area. A value for p can be found using long-term, historical data.

There are two important properties:

1. The mean of the distribution for the rate happens to be the rate at which unusual events occur =
n=mnp
2. The variance of the distribution is also 7. This property is particularly interesting - state in your own
words what this implies.
oz
x!
the lines are only guides, the probability is only defined at the integer values marked with a circle.

Formally, the Poisson distribution can be written as , with a plot as shown for 1 = 4. Please note

n=4
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number of events

p(x) expresses the probability that there will be x occurrences (must be an integer) of this rare event in
the same interval of time or unit area as  was measured.

Example: Equipment in a chemical plant can and will fail. Since it is a rare event, let’s use the Poisson
distribution to model the failure rates. Historical records on a plant show that a particular supplier’s
pumps are, on average, prone to failure in a month with probability p = 0.01 (1 in 100 chance of failure
each month). There are 50 such pumps in use throughout the plant. What is the probability that either 0,
1,3, 6,10, or 15 pumps will fail this year? (Create a table)

n=12 months

1 failure _ ; pump failures
year

x 50 pumps x 0.0 month year
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T p(z)

0 0.25% chance
1 1.5%

3 8.9

6 16%

10 4.1%

15 0.1%

x <- c(0, I, 3, 6, 10, I5)

# Note: R calls the Poisson parameter

dpois (x, lambda=6)

5 0.0149 0.0892 0.161 0.0413 0.00

2.11 Confidence intervals

So far we have calculated point estimates of parameters, called statistics. In the last section in the
t-distribution we already calculated a confidence interval. In this section we formalize the idea,
starting with an example.

Example: a new customer is evaluating your product, they would like a confidence interval for the
impurity level in your sulphuric acid. You can tell them: “the range from 429ppm to 673ppm contains the
true impurity level with 95% confidence”. This is a compact representation of the impurity level. You
could have told your potential customer that

¢ the sample mean from the last year of data is 551 ppm
¢ the sample standard deviation from the last year of data is 102 ppm
¢ the last year of data are normally distributed

But a confidence interval conveys a similar concept, in a useful manner. It gives an estimate of the
location and spread and uncertainty associated with that parameter (e.g. impurity level in this case).

Let’s return to the previous viscosity example, where we had the 9 viscosity measurements 23, 19,
17, 18, 24, 26, 21, 14, 18.Thesample average was T = 20.0 and the standard deviation was

. T— U
= 3.81. The z-val tz =
s e z-valueis: z N

t-distribution with 8 degrees of freedom.

. And we showed this was distributed according to the

Calculating a confidence interval requires we find a range within which that z-value occurs. Most
often we are interested in symmetrical confidence intervals, so the procedure is:

—c¢; < z < Ao
—¢¢ < Toh < Ho
. s/v/n . (2.4)
T — Ctﬁ < 7 < T+ Ctﬁ
IB < . < UB

The critical values of ¢; are gt (1 — 0.05/2, df=8) = 2.306004 when we used the 95%
confidence interval (2.5% in each tail). We calculated that LB = 20.0 - 2.92 = 17.1 and that UB = 20.0 +
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292=2209.

2.11.1 Interpreting the confidence interval

¢ The expression in (2.4) should not be interpreted to mean that the viscosity is 20 units and lies inside
the LB (lower-bound) to UB (upper-bound) range of 17.1 to 22.9 with a 95% probability. In fact, the
sample mean lies exactly at the mid-point of the range with 100% certainty - that is how the range
was calculated.

* What the expression in (2.4) does imply is that p lies in this interval. The confidence interval is a
range of possible values for 4, not for . Confidence intervals are for parameters, not for statistics.

* Notice that the upper and lower bounds are a function of the data sample used to calculate T and
the number of points, n. If we take a different sample of data, we will get different upper and lower
bounds.

¢ What does the level of confidence mean?

It is the probability that the true population viscosity, 1 is in the given range. At 95%
confidence, it means that 5% of the time the interval will not contain the true mean. So if we
collected 20 sets of n samples, 19 times out of 20 the confidence interval range will contain the
true mean, but one of those 20 confidence intervals is expected not to contain the true mean.

e What happens if the level of confidence changes? Calculate the viscosity confidence intervals for
90%, 95%, 99%.

Confidence LB UB

90% 17.6 224
95% 17.1 229
99% 15.7 24.2

As the confidence level is increased, our interval widens, indicating that we have a more
reliable region, but it is less precise. With a wider interval we have greater confidence that the
true parameter will be inside that region.

Try it out:

R code

# Try varying this v

viscosity <- c(23, 19, 17, 18,

24, 26, 21, 14, 18)
n <- length(viscosity)
x.avg <- mean (viscosity)
x.sd <- sd(viscosity)
dof <~ n - 1
c.t <- gt(p = 1-(l-conf.level)/2,

df = dof)

LB <- x.avg - c.t * x.sd / sqrt(n)
UB <- x.avg + c.t * x.sd / sqgrt(n)
pasteO('The ', round(conf.levelx100, 0),

'$ confidence interval is: ')

pasteO('[', round(LB, 1), '; ', round(UB, 1), ']")

e What happens if the level of confidence is 100%?
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The confidence interval is then infinite. We are 100% certain this infinite range contains the
population mean, however this is not a useful interval. Test it out in the code above; also try
creating an interval with 99.9% confidence, and then 99.99% confidence.

¢ What happens if we increase the value of n?
As intuitively expected, as the value of n increases, the confidence interval decreases in width.

® Returning to the case above, where at the 95% level we found the confidence interval was
[17.1;22.9] for the bale’s viscosity. What if we were to analyze the bale thoroughly, and found the
population viscosity to be 23.2. What is the probability of that occurring?

Less than 5% of the time.

i 2.11.2 Confidence interval for the mean from a normal distribution

Video for The aim here is to formalize the calculations for the confidence interval of 7, given a sample of n
this
section.

a) independent points, taken from
b) the normal distribution.
Be sure to check those two assumptions before going ahead.

There are 2 cases: one where you know the population standard deviation (unlikely), and one where
you do not (the usual case). It is safer to use the confidence interval for the case when you do not know
the standard deviation, as it is a more conservative (i.e. wider) interval.

The detailed derivation for the two cases was covered in earlier sections.

Case A. Variance is known

When the variance is known, the confidence interval is given by (2.5) below, derived from this

z-deviate: z = j /_\/% back in the section on the normal distribution (page 56).
—¢p < z < +ep
< IZE o g
—Cn = > Cn
(s G 25)
T S 1 < THen Tn
LB < 7 < UB
The values of ¢,, are gnorm (1 - 0.05/2) = 1.96 when we happen to use the 95% confidence

interval (2.5% in each tail).
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Case B. Variance is unknown

In the more realistic case when the variance is unknown we use the equation derived in the section on the

t-distribution (page 59), and repeated here below. This is derived from the z-deviate: z = : /?/%
—c¢g < z < Ao
e < Top < +c
—c < < t
_ S S/\/’ﬁ . S (26)
T — Ctﬁ < 7 < T+ Ctﬁ
LB < 1 < UB
The values of ¢; are gt (1 — 0.05/2, df=...) when we use the 95% confidence interval (2.5% in

each tail). This z-deviate is distributed according to the ¢-distribution, since we have additional
uncertainty when using the standard deviation estimate, s, instead of the population standard
deviation, o.

Comparison

2 2

If we have the fortunate case where our estimated variance, s°, is equal to the population variance, ¢,
then we can compare the 2 intervals in equations (2.5) and (2.6). The only difference would be the
value of the ¢,, from the normal distribution and ¢, from the ¢-distribution. For typical values used as

confidence levels, 90% to 99.9%, values of ¢; > ¢, for any degrees of freedom.

This implies the confidence limits are wider for the case when the standard deviation is unknown,
leading to more conservative results, reflecting our uncertainty of the standard deviation parameter, .

2.12 Testing for differences and similarity

These sort of questions often arise in data analysis:
* We want to change to a cheaper material, B. Does it work as well as A?

¢ We want to introduce a new catalyst B. Does it improve our product properties over the current
catalyst A?

Either we want to confirm things are statistically the same, or confirm they have changed. Notice that
in both the above cases we are testing the population mean (location). Has the mean shifted or is it the
same? There are also tests for changes in variance (spread), which we will cover. We will work with an
example throughout this section.

Example: A process operator needs to verify that a new form of feedback control on the batch reactor
leads to improved yields. Yields under the current control system, A, are compared with yields under
the new system, B. The last ten runs with system A are compared to the next 10 sequential runs with
system B. The data are shown in the table, and shown in graphical form as well. (Note that the box
plot uses the median, while the plots on the right show the mean.)
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A B 2 4 6 8 10 2 4 6 8 10
Index Index
Experiment number Feedback system  Yield Experiment number Feedback system  Yield
1 A 827 11 B 83.5
2 A 73.3 12 B 78.4
3 A 80.5 13 B 82.7
4 A 81.2 14 B g93.2
5] A 87.1 15 B 86.3
6 A 69.2 16 B T4.7
T A 81.9 17 B 816
8 A 73.9 18 B 92.4
2] A 78.6 19 B 83.6
10 A 80.5 20 B 72.4
Mean 79.89 Mean 82.93
Standard deviation 6.81 Standard deviation 6.70
— — - - — R code
# Generate the pboxplot
A <- c(92.7, 73.3, 80.5, 81.2, 87.1,
69.2, 81.9, 73.9, 78.6, 80.5)
B <- c(83.5, 78.9, 82.7, 93.2, 86.3,
74.7, 81.6, 92.4, 83.6, 72.4)
data.A <- data.frame (observe=A, method='A")
data.B <- data.frame (observe=B, method='B'")
data <- rbind(data.A, data.B)

limits <- range (data$observe)

boxplot (dataSobs ~ dataS$method,

main="Batch yield (%)

for two trials")

lwd=2,

We address the question of whether or not there was a significant difference between system A and B. A

significant difference means that when system B is compared to a suitable reference, that we can be

2.12. Testing for differences and similarity

67



Process Improvement Using Data

sure that the long run implementation of B will lead, in general, to a different yield (%). We want to be
sure that any change in the 10 runs under system B were not only due to chance, because system B will
cost us $100,000 to install, and $20,000 in annual software license fees.

Note: those with a traditional statistical background will recognize this section as one-sided
hypothesis tests. We will only consider tests for a significant increase or decrease, i.e. one-sided
tests, in this section. We use confidence intervals, rather than hypothesis tests; the results are
exactly the same. Arguably the confidence interval approach is more interpretable, since we get a
bound, rather that just a clear-cut yes/no answer.

There are two main ways to test for a significant increase or significant decrease.

2.12.1 Comparison to a long-term reference set

Continuing the above example we can compare the past 10 runs from system B with the 10 runs from
system A. The average difference between these runsis Tp — T4 = 82.93 — 79.89 = 3.04 units of
improved yield. Now, if we have a long-term reference data set available, we can compare if any 10
historical, sequential runs from system A, followed by another 10 historical, sequential runs under
system A had a difference that was this great. If not, then we know that system B leads to a definite
improvement, not likely to be caused by chance alone.

Here’s the procedure:

1. Imagine that we have 300 historical data points from this system, tabulated in time order: yield

from batch 1,2, 3 ... (the data are available on the website3*).

2. Calculate the average yields from batches 1 to 10. Then calculate the average yield from batches 11
to 20. Notice that this is exactly like the experiment we performed when we acquired data for
system B: two groups of 10 batches, with the groups formed from sequential batches.

3. Now subtract these two averages: (group average 11 to 20) minus (group average 1 to 10).

4. Repeat steps 2 and 3, but use batches 2 to 11 and 12 to 21. Repeat until all historical batch data are
used up, i.e. batches 281 to 290 and 291 to 300. The plot below can be drawn, one point for each of
these difference values.

o
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(o] O O O 0O O0COCO OO O O O >
(o] O O 0O OO000CCOO OO0 OO0 O
(o] O O O 00000COCOO0000 00O OO (o]
O O OO0 OCCOO0 0OOOOOCOOOO000 OOOCOOOOY O (e'e]
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Difference between means of 2 adjacent groups (10 batches per group)

The vertical line at 3.04 is the difference value recorded between system B and system A. From this we
can see that historically, there were 31 out of 281 batches, about 11% of historical data, that had a
difference value of 3.04 or greater. So there is a 11% probability that system B was better than system A
purely by chance, and not due to any technical superiority. Given this information, we can now judge,
if the improved control system will be economically viable and judge, based on internal company
criteria, if this is a suitable investment, also considering the 11% risk that our investment will fail.

34 http://openmv.net/info/batch-yields
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Notice that no assumption of independence or any form of distributions was required for this work!
The only assumption made is that the historical data are relevant. We might know this if, for example,
no substantial modification was made to the batch system for the duration over which the 300 samples
were acquired. If however, a different batch recipe were used for sample 200 onwards, then we may
have to discard those first 200 samples: it is not fair to judge control system B to the first 200 samples
under system A, when a different operating procedure was in use.

So to summarize: we can use a historical data set if it is relevant. And there are no assumptions of
independence or shape of the distribution, e.g. a normal distribution.

In fact, for this example, the data were not independent, they were autocorrelated. There was a
relationship from one batch to the next: z[k] = ¢x[k — 1] + a[k], with ¢ = —0.3, and

alk] ~ N (= 0,0% = 6.7%). As an aside you can simulate your own set of autocorrelated data using
this R code:

R code

N <= 300

phi <- -0.3
spread <- 6.7
location <- 79.9

# create a vector o
A.hist <- numeric(N
for (k in 2:N)
{
A.hist[k] <- phix (A.hist[k-1]
rnorm(l, mean = 0, sd

f zeros
)

A.hist <- A.hist + location

# Note: your plot will look diff

# the text, because %
# different set of random n
title = pasteO("Autocorrelation between "

"successive values of batch yield")

plot (A.hist[1:N-1], A.hist[2:N],

xlab = "x[k]",
ylab = "x[k+1]",
main = title,
lwd = 3,

xlim = c(60,100),
ylim = c(60,100))

lines (lowess (A.hist[1:N-1], A.hist[2:N]))

1 the code several times, with

values of variable ‘phi’

We can visualize this autocorrelation by plotting the values of z[k] against [k + 1]:
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Autocorrelation between successive values of batch yield
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We can immediately see the data are not independent, because the slope is non-zero.

2.12.2 Comparison when a reference set is not available

A reference data set may not always be available; we may only have the data from the 20 experimental
runs (10 from system A and 10 from B) and nothing else. We can proceed to compare the data, but we
will require a strong assumption of random sampling (independence), which is often not valid in
engineering data sets. Fortunately, engineering data sets are usually large - we are good at collecting
data - so the methodology in the preceding section on using a reference set, is greatly preferred, when
possible.

How could the assumption of independence (random sampling) be made more realistically? How is
the lack of independence detrimental? We show below that the assumption of independence is made
twice: the samples within group A and B must be independent; furthermore, the samples between the
groups should be independent. But first we have to understand why the assumption of independence
is required, by understanding the usual approach for estimating if differences are significant or not.

The usual approach for assessing if the difference between Tp — 7 4 is significant follows this approach:

1. Assume the data for sample A and sample B have been independently sampled from their
respective populations.

2. Assume the data for sample A and sample B have the same population variance, 04 =op =0
(there is a test for this, see the next section).

3. Let the sample A have population mean p 4 and sample B have population mean .
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4. From the central limit theorem (this is where the assumption of independence of the samples within
each group comes), we know that:

2

2
vm}:% v%}:%

5. Assuming independence again, but this time between groups, this implies the average of each
sample group is independent, i.e. T4 and ZTp are independent of each other. This allows us to write:

o2 o2 1 1
R 27)

na np na np

6. Using the central limit theorem, even if the samples in A and the samples in B are non-normal, the
sample averages T4 and Tp will be more normal as the sample size becomes progressively larger.
So the difference between these means will also be more normal: Zp — T 4. Now express this
difference in the form of a z-deviate (standard form):

(Tp —Ta) — (B — pa)
(Lot @8

na np

z =

We could ask, what is the probability of seeing a z value from equation (2.8) of that magnitude?
Recall that this z-value is the equivalent of Zp — T 4, expressed in deviation form, and we are
interested if this difference is due to chance. So we should ask, what is the probability of getting a
value of z greater than this, or smaller that this, depending on the case?

The only question remains is what is a suitable value for 6? As we have seen before, when we have
a large enough reference set, then we can use the value of o from the historical data, called an
external estimate. Or we can use an internal estimate of spread; both approaches are discussed below.

Now we know the approach required, using the above 6 steps, to determine if there was a significant
difference. And we know the assumptions that are required: normally distributed and independent
samples. But how can we be sure our data are independent? This is the most critical aspect, so let’s
look at a few cases and discuss, then we will return to our example and calculate the z-values with
both an external and internal estimate of spread.

Discuss whether these experiments would lead to independent data or not, and how we might
improve the situation.

a) We are testing a new coating to repel moisture. The coating is applied to packaging sheets that are
already hydrophobic, however this coating enhances the moisture barrier property of the sheet. In
the lab, we take a large packaging sheet and divide it into 16 blocks. We coat the sheet as shown in
the figure and then use the n4 = 8 and np = 8 values of hydrophobicity to judge if coating B is
better than coating A.
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B | B | B | B

Some problems with this approach:

The packaging sheet to which the new coating is applied may not be uniform. The sheet is
already hydrophobic, but the hydrophobicity is probably not evenly spread over the sheet, nor
are any of the other physical properties of the sheet. When we measure the moisture repelling
property with the different coatings applied, we will not have an accurate measure of whether
coating A or B worked better. We must randomly assign blocks A and B on the packaging sheet.

Even so, this may still be inadequate, because what if the packaging sheet selected has overly
high or low hydrophobicity (i.e. it is not representative of regular packaging sheets). What
should be done is that random packaging sheets should be selected, and they should be selected
across different lots from the sheet supplier (sheets within one lot are likely to be more similar
than between lots). Then on each sheet we apply coatings A and B, in a random order on each
sheet.

It is tempting to apply coating A and B to one half of the various sheets and measure the difference
between the moisture repelling values from each half. It is tempting because this approach
would cancel out any base variation between difference sheets, as long as that variation is
present across the entire sheet. Then we can go on to assess if this difference is significant.

There is nothing wrong with this methodology, however, there is a different, specific test for
paired data, covered in a later section (page 76). If you use the above test, you violate the
assumption in step 5, which requires that 4 and Ty be independent. Values within group A and
B are independent, but not their sample averages, because you cannot calculate T4 and Zp
independently.

We are testing an alternative, cheaper raw material in our process, but want to be sure our product’s

final properties are unaffected. Our raw material dispensing system will need to be modified to
dispense material B. This requires the production line to be shut down for 15 hours while the new
dispenser, lent from the supplier, is installed. The new supplier has given us 8 representative
batches of their new material to test, and each test will take 3 hours. We are inclined to run these 8

batches over the weekend: set up the dispenser on Friday night (15 hours), run the tests from

Saturday noon to Sunday noon, then return the line back to normal for Monday’s shift. How might

we violate the assumptions required by the data analysis steps above when we compare 8 batches

of material A (collected on Thursday and Friday) to the 8 batches from material B (from the

weekend)? What might we do to avoid these problems?

The 8 tests are run sequentially, so any changes in conditions between these 8 runs and the 8 runs
from material A will be confounded (confused) in the results. List some actual scenarios how

72
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confounding between the weekday and weekend experiments occur:

— For example, the staff running the equipment on the weekend are likely not the same staff that
run the equipment on weekdays.

— The change in the dispenser may have inadvertently modified other parts of the process, and
in fact the dispenser itself might be related to product quality.

— The samples from the tests will be collected and only analyzed in the lab on Monday, whereas
the samples from material A are usually analyzed on the same day: that waiting period may
degrade the sample.

This confounding with all these other, potential factors means that we will not be able to
determine whether material B caused a true difference, or whether it was due to the other
conditions.

¢ Itis certainly expensive and impractical to randomize the runs in this case. Randomization
would mean we randomly run the 16 tests, with the A and B chosen in random order,e.g. A B A
BAABBAABB B A B A This particular randomization sequence would require
changing the dispenser 9 times.

® One suboptimal sequence of running the systemisA A A A B BB B A A A A B B B B
This requires changing the dispenser 4 times (one extra change to get the system back to material
A). Weruneach(2 A A A B B B B)sequence on two different weekends, changing the
operating staff between the two groups of 8 runs, making sure the sample analysis follows the
usual protocols: so we reduce the chance of confounding the results.

Randomization might be expensive and time-consuming in some studies, but it is the insurance we
require to avoid being misled. These two examples demonstrate this principle: block what you can
and randomize what you cannot. We will review these concepts again in the design and analysis of
experiments section (page 231). If the change being tested is expected to improve the process, then we
must follow these precautions to avoid a process upgrade/modification that does not lead to the
expected improvement; or the the converse - a missed opportunity of implementing a change for the
better.

External and internal estimates of spread

So to recap the progress so far, we are aiming to test if there is a significant, long-term difference between
two systems: A and B. We showed the most reliable way to test this difference is to compare it with a
body of historical data, with the comparison made in the same way as when the data from system A
and B were acquired; this requires no additional assumptions, and even allows one to run experiments
for system B in a non-independent way.

But, because we do not always have a large and relevant body of data available, we can calculate the
difference between A and B and test if this difference could have occurred by chance alone. For that
we use equation (2.8), but we need an estimate of the spread, o.

External estimate of spread

The question we turn to now is what value to use for ¢ in equation (2.8). We got to that equation by
assuming we have no historical, external data. But what if we did have some external data? We could
at least estimate o from that. For example, the 300 historical batch yields has o = 6.61:

Check the probability of obtaining the z-value in (2.8) by using the hypothesis that the value
e — pa = 0. In other words we are making a statement, or a test of significance. Then we calculate

2.12. Testing for differences and similarity 73



Process Improvement Using Data

this z-value and its associated cumulative probability:
(Tp —Ta) — (1B — p14)
1 1
(22
nA  NB
(82.93 — 79.89) — (B — pra)
1 1
612 — 4+ —
oo (5 )
_3.04-0
-~ 2.956

z =

z =

=1.03

The probability of seeing a z-value from —oo up to 1.03 is 84.8% (use the pnorm (1.03) function in R).
But we are interested in the probability of obtaining a z-value larger than this. Why? Because z = 0
represents no improvement, and a value of z < 0 would mean that system B is worse than system A.
So what are the chances of obtaining z = 1.03? It is (100-84.8)% = 15.2%, which means that system B’s
performance could have been obtained by pure luck in 15.2% of cases.

A <-<c(97.7, 733, 805, 812, 57T, R code
69.2, 81.9, 73.9, 78.6, 80.5)

B <- c(83.5, 78.9, 82.7, 93.2, 86.3,
74.7, 81.6, 92.4, 83.6, 72.4)

xA.avg <- mean (A)

xB.avg <- mean (B)

n.A <- length(a)

n.B <- length(B)

sigma.external <- 6.61 # given

den <- sigma.external+*2 = (1/n.A + 1/n.B)
z <- (xB.avg - xA.avg) / sqgrt (den)

Probability of this z?

We have nor: lized to zero n

and to unit standard devia

O 3 3

<- pnorm(z, mean=0, sd=1) # 0.8481164
pastel ('Probability by chance: ',

round((l-p)*100, 1), '%")

We interpret this number of “15.2%” in the summary section, but let’s finally look at what happens if
we have no historical data - then we generate an infernal estimate of o from the 20 experimental runs
alone.

Internal estimate of spread

The sample variance from each system was s% = 6.81% and s% = 6.702, and in this case it happened
that ny = np = 10, although the sample sizes do not necessarily have to be the same.

If the variances are comparable (there is a test for that below (page 78)), then we can calculate a pooled
variance, s%, which is a weighted sum of the sampled variances:

(na — 1)5?4 + (np — 1)523

5% =
P na—1l+ng—1
5, 9%6.81249 x6.70
°p = 18
5% = 45.63
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Now using this value of sp instead of o in (2.8):

(Tp —Ta) — (B — pa)

.
52 (1 N 1)
na np
 (82.93 —79.89) — (up — p1a)
1 1
#(1+ 1)
3.04—-0
~ /45.63 x 2/10
z=1.01

The probability of obtaining a z-value greater than this can be calculated as 16.4% using the
t-distribution with 18 degrees of freedom (use 1-pt (1.01, df=18) in R). We use a t-distribution
because an estimate of the variance is used, 512), not a population variance, o2.

A <-c(92.7, 73.3, 80.5, 8L.2, 87.1, R code
69.2, 81.9, 73.9, 78.6, 80.5)

B <- c(83.5, 78.9, 82.7, 93.2, 86.3,
74.7, 81.6, 92.4, 83.6, 72.4)

xA.avg <- mean (A)

xB.avg <- mean (B)

n.A <- length(A)

n.B <- length (B)

# degrees of freedom

dof <~ n.A - 1 + n.B - 1

var.pooled <- ((n.A — 1) % var(A) +

1) = var(B)) / dof

den <- var.pooled * (1/n.A + 1/n.B)
z <- (xB.avg - xA.avg) / sqrt (den)

# Probability of thi

# Compare it against the t- tri
p <- pt(z, df = dof) # 0.8361346

t-distribution:

pastel ('Probability by chance: ',

round((1l-p)*100, 1), '%")

As an aside: we used a normal distribution for the external ¢ and a ¢-distribution for the internal s.
Both cases had a similar value for z (compare z = 1.01 to z = 1.03). Note however that the probabilities
are higher in the ¢-distribution’s tails, which means that even though we have similar z-values, the
probability is greater: 16.4% against 15.2%. While this difference is not much from a practical point of
view, it illustrates the difference between the t-distribution and the normal distribution.

The results from this section were achieved by only using the 20 experimental runs, no external data.
However, it made some strong assumptions:

* The variances of the two samples are comparable, and can therefore be pooled (page 78) to provide an
estimate of o.

¢ The usual assumption of independence within each sample is made (which we know not to be true
for many practical engineering cases).

* The assumption of independence between the samples is also made (this is more likely to be true in
this example, because the first runs to acquire data for A are not likely to affect the runs for system
B).
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e Each sample, A and B, is assumed to be normally distributed.

Summary and comparison of methods

Let’s compare the 3 estimates. Recall our aim is to convince ourself/someone that system B will have
better long-term performance than the current system A.

If we play devil’s advocate, our null hypothesis is that system B has no effect. Then it is up to us to
prove, convincingly, that the change from A to B has a systematic, permanent effect. That is what the
calculated probabilities represent :, the probability of us being wrong.

1. Using only reference data: 11% (about 1 in 10)
2. Using the 20 experimental runs, but an external estimate of o: 15.2% (about 1 in 7)
3. Using the 20 experimental runs only, no external data: 16.4% (about 1 in 6)

The reference data method shows that the trial with 10 experiments using system B could have
actually been taken from the historical data with a chance of 11%. A risk adverse company may want
this number to be around 5%, or as low as 1% (1 in 100), which essentially guarantees the new system
will have better performance.

When constructing the reference set, we have to be sure the reference data are appropriate. Were the
reference data acquired under conditions that were similar to the time in which data from system B
were acquired? In this example, they were, but in practice, careful inspection of plant records must be
made to verify this.

The other two methods mainly use the experimental data, and provide essentially the same answer in
this case study, though that is not always the case. The main point here is that our experimental data are
usually not independent. However, by careful planning, and expense, we can meet the requirement of
independence by randomizing the order in which we acquire the data. Randomization is the insurance
(cost) we pay so that we do not have to rely on a large body of prior reference data. But in some cases
it is not possible to randomize, so blocking is required. More on blocking in the design of experiments
section (page 275).

2.13 Paired tests

A paired test is a test that is run twice on the same object or batch of materials. You might see the
nomenclature of “two treatments” being used in the literature. For example:

* A drug trial could be run in two parts: each person randomly receives a placebo or the drug, then 3
weeks later they receive the opposite, for another 3 weeks. Tests are run at 3 weeks and 6 weeks and
the difference in the test result is recorded.

e We are testing two different additives, A and B, where the additive is applied to a base mixture of
raw materials. Several raw material lots are received from various suppliers, supposedly uniform.
Split each lot into 2 parts, and run additive A and B on each half. Measure the outcome variable, e.g.
conversion, viscosity, or whatever the case might be, and record the difference.

* We are testing a new coating to repel moisture. The coating is applied to randomly selected sheets
in a pattern [A | B] or [B | A] (the pattern choice is made randomly). We measure the repellent
property value and record the difference.
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In each case we have a table of n samples recording the difference values. The question now is
whether the difference is significant, or is it essentially zero?

The advantage of the paired test is that any systematic error in our measurement system, what ever it
might be, is removed as long as that error is consistent. Say for example we are measuring blood
pressure, and the automated blood pressure device has a bias of -5 mmHg. This systematic error will
cancel out when we subtract the 2 test readings. In the example of the raw materials and additives:
any variation in the raw materials and its (unintended) effect on the outcome variable of interest will
be cancelled.

The disadvantage of the paired test is that we lose degrees of freedom. Let’s see how:

1. Calculate the n differences: w1 = xp1 — Ta,1; w2 = B2 — T4a,2,... to create the sample of values

w = [wi, Wa, ..., w,]

2. Assume these values, w;, are independent, because they are taken on independent objects (people,
base packages, sheets of paper, efc)

3. Calculate the mean, w and the standard deviation, s,,, of these n difference values.

4. What do we need to assume about the population from which w comes? Nothing. We are not
interested in the w values, we are interested in w. OK, so what distribution would values of w come
from? By the central limit theorem, the W values should be normally distributed as
W~ N (ptw, 02, /n), where p, = pa—p.

5. Now calculate the z-value, but use the sample standard deviation, instead of the population
standard deviation.

E_.uw

Sw/vV/n

z =

6. Because we have used the sample standard deviation, s,,, we have to use to the ¢-distribution with
n — 1 degrees of freedom, to calculate the critical values.

7. We can calculate a confidence interval, below, and if this interval includes zero, then the change
from treatment A to treatment B had no effect.

_ Sw < < T+ Sw
W— ¢—= W+ c—=
t \/ﬁ Haw t \/ﬁ
The value of ¢; is taken from the ¢-distribution with n — 1 degrees of freedom at the level of
confidence required: use the gt (. . .) function in R to obtain the values of ¢;.

The loss of degrees of freedom can be seen when we use exactly the same data and treat the problem
as one where we have n 4 and np samples in groups A and B and want to test for a difference between
ta and pp. You are encouraged to try this out. There are more degrees of freedom, n4 + np — 2 in fact
when we use the ¢-distribution with the pooled variance shown here (page 74). Compare this to the case
just described above where there are only n degrees of freedom.
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2.14 Other types of confidence intervals

There are several other confidence intervals that you might come across in your career. We merely
mention them here and don’t cover their derivation. What is important is that you understand how to
interpret a confidence interval. Hopefully the previous discussion achieved that.

2.14.1 Confidence interval for the variance

This confidence interval finds a region in which the normal distribution’s variance parameter, o, lies.
The range is obviously positive, since variance is a positive quantity. For reference, this range is:

(n—1)52 to (n—1)52

2 2
Xn—1,0/2 Xn—1,1-a/2

¢ n is the number of samples
¢ 52 is the sample variance
* X2 .. /2 are values from the x? distribution with n — 1 and «/2 degrees of freedom

® 1 — o is the level of confidence, usually 95%, so o = 0.05 in that case.

2.14.2 Confidence interval for the ratio of two variances

One way to test whether we can pool (combine) two variances, taken from two different normal
2
distributions, is to construct the ratio: —é We can construct a confidence interval, and if this interval
82
contains the value of 1.0, then we have no evidence to presume they are different (i.e. we can assume

the two population variances are similar).

2 2 2

S g S
2 2 2
Fa/l’hﬂh? < o2 < F1—0/27V17V287
1 1 1

where we use F, 3 ,, ., to mean the point along the cumulative F-distribution which has area of /2
using v; degrees of freedom for estimating s; and v, degrees of freedom for estimating s,. For
example, in R, the value of F{ ¢5/2,10,20 can be found from gf (0.025, 10, 20) as 0.2925. The point
along the cumulative F-distribution which has area of 1 — «/2 is denoted as Fy _,/2,,,.,, and « is the
level of confidence, usually a = 0.05 to denote a 95% confidence level.

2.14.3 Confidence interval for proportions: the binomial proportion confidence interval

Sometimes we measure the proportion of successes (passes). For example, if we take a sample of n
independent items from our production line, and with an inspection system we can judge pass or
failure. The proportion of passes is what is important, and we wish to construct a confidence region for
the population proportion. This allows one to say the population proportion of passes lies between the
given range. As in the proportion of packaged pizzas with 20 or more pepperoni slices is between 86 and 92%.

Incidentally, it is this confidence interval that is used in polls to judge the proportion of people that
prefer a political party. One can run this confidence interval backwards and ask: how many
independent people do I need to poll to achieve a population proportion that lies within a range of
+2%, 19 times out of 20? The answer actually is function of the poll result! But the worst case scenario
is a split-poll, and that requires 2400 respondents.
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2.15 Statistical tables for the normal- and t-distribution

Normal distribution

é i:—) 7 o 0-0-0"2-° é S 7 _o—0-0"0"
3 s 2
2o ° 2w | /
T © / T ©
g o % gnorm(q) [
S w S w
23 / 231
E ° g [
g d: - / % = /
©o O o]
% pnorm(z) % d
(] )]
2 o z o
T o o S o /
5 ,0/ 5 ]
1 © | o.om0-0-2° IS | ge0.0-0—=°"
o o T T T T T T = = T T T T T T T
-3 -2 -1 0 1 3 -3 -2 -1 0 1 2 3
2 z
z q = cumulative area under q = cumulative area under z
the normal distribution the normal distribution
-3.00 0.001350 0.001 -3.090
-2.75 0.002980 0.0025 -2.807
-2.50 0.006210 0.005 -2.576
-2.25 0.01222 0.01 -2.326
-2.00 0.02275 0.025 -1.960
-1.80 0.03593 0.05 -1.645
-1.50 0.06681 0.075 -1.440
-1.00 0.1587 0.1 -1.282
-0.50 0.3085 0.3 -0.5244
0.00 0.5 0.5 0.0
0.50 0.6915 0.7 0.5244
1.00 0.8413 09 1.282
1.50 0.9332 0.925 1.440
1.80 0.9641 0.95 1.645
2.00 0.9773 0.975 1.960
225 0.9878 0.99 2.326
2.50 0.9938 0.995 2.576
2.75 0.9970 0.9975 2.807
3.00 0.9987 0.999 3.090
t distribution
z-value when area under the tail is
Degrees
of freedom
0.4 025 0.1 005 0025 001  0.005
1 0325 1.000 3.08 6.31 127 318 63.7
2 0.289 0.816 1.89 292 430 697 992
3 0277 0.765 1.64 235 3118 454 584
4 0.271 0.741 1.53 213 278 375 4.60
5 0.267 0.727 148 202 257 337 4.03
10 0260 0.700 1.37 1.81 2.23 276 317
> 15 0.258 0.691 1.34 1.75 2.13 260 295
20 0.257 0.687 1.33 172 209 253 285
30 0.256 0.683 1.31 170 2.04 246 275
60 0.254 0.679 1.30 1.67 200 239 266
Infinite 0.253 0.674 1.28 164 19 233 258
4 2 0 2 4
If interested, here is the code used to generate these figures
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# The source code used to generate the R code
# *normal distributionx section:
q <- c(seq(-3.0, -2.0, 0.25),
c(-1.8, -1.5, -1.0, -0.5, 0, 0.5,
1.0, 1.5, 1.8),
seq (2.0, 3.0, 0.25))
cumulative.quantile = pnorm(q)
p <- c¢(0.001, 0.0025, 0.005, 0.010, 0.025,
0.05, 0.075, 0.10, 0.3, 0.5, 0.7,
0.9, 0.925, 0.950, 0.975, 0.99,
0.995, 0.9975, 0.999
cumulative.probability = gnorm(p)
layout (matrix(c(1,2), 1, 2))
par (mar = c(4.2, 4.2, 0.2, 1))
plot (g, cumulative.quantile,
type = "b",
main = "",
xlab = "z",
ylab = "g = cumulative area under the normal distribution",
cex.lab = 1.4,
cex.main = 1.8,
lwd = 4,
cex.sub = 1.8,
cex.axis = 1.8,
ylim = ¢ (0, 1))
grid(col="gray30"
al = -0.6
arrows (al, y = -0.2, x1 = al,
yl = pnorm(al),
code = 0, lwd = 2)
arrows (al, y = pnorm(al), x1 = -3,
yl = pnorm(al), code = 2, lwd = 2)
text (-2, pnorm(al) + 0.05, "pnorm(z)",
cex = 1.5)
plot (cumulative.probability, p,
type = "b",
main = ""
xlab = "z"
ylab = "g = cumulative area under the normal distribution",
cex.lab = 1.4,
cex.main = 1.8,
lwd = 4,
cex.sub = 1.8,
cex.axis = 1.8,

ylim = c(0, 1))

grid(col = "gray30")
al = gnorm(0.65)
arrows (al, y = 0, x1 = al,
yl = pnorm(al), code = 1, lwd = 2)
arrows (al, y=pnorm(al), x1 = -5,

yl = pnorm(al), code = 0, lwd = 2)
text (-2, pnorm(al)+0.05, "gnorm(qg)",
cex = 1.5)

# The source code used to generate the t-distribution section:
dof <- ¢(1, 2, 3, 4, 5, 10, 15, 20,
30, 60, Inf)
tail.area.oneside <- ¢ (0.4, 0.25, 0.1,
0.05, 0.025, 0.01, 0.005)

n.dof <- length (dof)
n.tails <- length(tail.area.oneside)

values <- matrix (0, nrow=n.dof, ncol=n.tails)

(continues on next page)
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(continued from previous page)

k=0
for (entry in tail.area.oneside) {
k =k + 1
values[ , k] <- abs(qgt (entry, dof))

}

round (values, 3)

par (mar=c(4.2, 4.2, 0.2, 1)
z <- seq(-5, 5, 0.01)
probabilty <- dt(z, df=5)
plot (z, probabilty,

type = "1",
main = "",
xlab = "z",
ylab = "Probabilities from the t-distribution",
cex.lab = 1.4,
cex.main = 1.8,
lwd = 4,
cex.sub = 1.8,
cex.axis = 1.8)
abline(h = 0)
z = 1.5
abline(v = z)
abline(v = 0)

2.16 Exercises

Question 1

1 1
Recall that u = £(z) = v Szand V{z} =E{(z — p)?} = 0% = N So(z — )2
1. What is the expected value thrown of a fair 6-sided die? (Note: plural of die is dice)

2. What is the expected variance of a fair 6-sided die?

Short answer: 3.5; 2.92

Question 2

Characterizing a distribution: Compute the mean, median, standard deviation and MAD for salt
content for the various soy sauces given in this report® (page 41) as described in the the article from
the Globe and Mail*® on 24 September 2009. Plot a box plot of the data and report the interquartile
range (IQR). Comment on the 3 measures of spread you have calculated: standard deviation, MAD,

and interquartile range.

The raw data are given below in units of milligrams of salt per 15 mL serving:

[460, 520, 580, 700, 760, 770, 890, 910, 920, 940, 960, 1060, I1100]

Short answer: IQR = 240 mg salt/15 mL serving

35 https: //beta.images.theglobeandmail.com/archive /00245 /Read_the_report_245543a.pdf
36 https: //www.theglobeandmail.com/incoming/salt-variation-between-brands-raises-call-for-cuts /article4287171/
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Question 3

Give a reason why Statistics Canada reports the median income when reporting income by geographic
area. Where would you expect the mean to lie, relative to the median? Use this table® to look up the
income for Hamilton. How does it compare to Toronto? And all of Canada?

Solution

We described how easily the mean is influenced by unusual data points (page 41). Take any group of
people anywhere in the world, and there will always be a few who earn lots of money (not everyone
can be the CEQ, especially of a bank!). Also, since no one earns negative income, the distribution piles
up at the left, with fewer people on the right. This implies that the mean will lie above the median,
since 50% of the histogram area must lie below the median, by definition. A previous student pointed
out that low income earners are less likely to file tax returns, so they are underrepresented in the data.

Even though the median is a more fair way of reporting income, and robust to unusual earners (many
low income earners, very few super-rich), I would prefer if Statistics Canada released a histogram -
that would tell a lot more - even just the MAD, or IQR would be informative. It was surprising that
Hamilton showed higher median earnings per family than Toronto. I infer from this that there are
more low income earners in Toronto and Canada than in Hamilton, but without the histograms it is
hard to be sure. Also,  wasn’t able to find exactly what StatsCan means by a family - did they include
single people as a “family”? Maybe there are more, wealthy singles in Toronto, but they are aren’t
included in the numbers. The median income per person would be a useful statistic to help judge that.

Question 4

Use the data set on raw materials®.
¢ How many variables in the data set?
¢ How many observations?

* The data are properties of a powder. Plot each variable, one at a time, and locate any outliers.
R-users will benefit from the R tutorial® (see the use of the ident i fy function).

Solution

See the code below that generates the plots. Outliers were identified by visual inspection of these
plots. Recall an outlier is an unusual/interesting point, and a function of the surrounding data. You
can use a box plot to locate preliminary outliers, but recognize that you are leaving the computer to
determine what is unusual. Automated outlier detection systems work moderately well, but there is
no substitute (yet!) for visual inspection of the data.

The same few samples appear to be outliers in most of the variables.

rm <- read.csv('http://openmv.net/file/raw—material-properties.csv’)

ncol (rm) # 7 columns

(continues on next page)

%7 https: //www150.statcan.gc.ca/ cgi-bin / tableviewer.pl?page=101/cst01 /famil107a-eng.htm
38 http://openmv.net/info/raw-material-properties
39 https://learnche.org/4C3/Software_tutorial
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(continued from previous page)

nrow (rm) # 36 rows

# Plot the data as you normally would
plot (rm$sizel, ylab="Particle size: level 1")

# Now use the identify(...) command, with the same data as you plotted. Use the
# "labels" option to let R use the "Sample" column to label points where you click
identify (rm$sizel, labels=rm$Sample)

# After issuing the "identify(...)" command, click on any interesting points in the
# plot. Right-click anywhere to stop selecting points.

# Repeat with the other columns

plot (rm$size2, ylab="Particle size: level 2")
identify (rm$size2, labels=rm$Sample)

plot (rm$size3, ylab="Particle size: level 3")
identify (rm$size3, labels=rm$Sample)

plot (rm$densityl, ylab="Particle density: level 1")
identify (rm$densityl, labels=rmS$Sample)

plot (rm$density2, ylab="Particle density: level 2")
identify (rm$density2, labels=rmS$Sample)

plot (rm$density3, ylab="Particle density: level 3")

identify (rm$density3, labels=rmS$Sample)

o X54272
(2] —
o
o X15468
o] —
- o
T o
3 ) ° o o
- o
N ° o
s~ ° °
O o | o ° o 0 o
=] o
©
o o o
(o]
o o
o %5 © °
s o o
)
o ° o
wn
S 7 o
T T T T T T T T
0 5 10 15 20 25 30 35

Index

2.16. Exercises 83



Process Improvement Using Data

o X54272
X15468
o
) 0 X24055
N
o X12558
o
[aV)
= o
RIS o
@ o
5
N o
[}
© o o
'g Ao o o
NN
o o o
(o] (o]
o o o
o
o~ | o
N o o
o o o
o o
o o o o
o o
T T T T T I I
0 5 10 15 20 25 30 35
Index
o X54272
o
~
wn
©
0 X12558 o X24055
o
T
z © 0 X40503
. [(e]
I X61888 o
]
2
o
£ v o
& ° o
o o o
[} o
o 50 o ©co © o
w ° fe) o
o} o
o o
< o
o
o
T T T T I T I
5 10 15 20 25 30 35
Index
84

Chapter 2. Univariate Data Analysis



Release 10d109

N
= o X12558
0 X24905
o X56952 o
<
X72736 o
2
B
5 o °
o
o
E g o
2 o
o o
o o
@
o e)
o
© o
[32)
(o]
(@]
o (o]
< (o] (@]
@ \ T T T \ T I
5 10 15 20 25 30 35
Index
o X12558
~
o
X24905
9 —
X56952 0 v 75736 o
N 0 _|
> -
B o
c
7]
© o
> =
g T
g 0 °
(6]
o
3 o © o
& ° .
° o
o fe) o o) o
o
- | o
o
T \ T T T T T T
0 5 10 15 20 25 30 35
Index

2.16. Exercises

85



Process Improvement Using Data

N

| o

A X54272

g
3]
2
B
c
3 ) o o
s o | ©
3 < o
c o [e )] (o]
3]
o
o
° o
@ o o o o
o

o |

© Oo o © oo ©

(] o ]
[ce]
o
X53925 o
T \ T T T \ T T
0 5 10 15 20 25 30 35
Index

Question 5

Write a few notes on the purpose of feedback control, and its effect on variability of process quality.

Question 6

Use the section on Historical data*’ from Environment Canada’s website and use the Customized
Search option to obtain data for the HAMILTON A station from 2000 to 2009. Use the settings as
Year=2000,and Data interval=Monthly and request the data for 2000, then click Next year to
go to 2001 and so on.

¢ For each year from 2000 to 2009, get the total snowfall and the average of the Mean temp over the
whole year (the sums and averages are reported at the bottom of the table).

¢ Plot these 2 variables against time

* Now retrieve the long-term averages for these data from a different section of their website*! (use
the same location, HAMILTON A, and check that the data range is 1971 to 2000). Superimpose the
long-term average as a horizontal line on your previous plot.

¢ Note: the purpose of this exercise is more for you to become comfortable with web-based data
retrieval, which is common in most companies.

¢ Note: please use any other city for this question if you prefer.

40 https://climate.weather.gc.ca/index_e.html
41 https://climate. weather.gc.ca/climate_normals/index_e.html
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Question 7

Does the number of visits in the website traffic*? data set follow a normal distribution? If so, what are
the parameters for the distribution? What is the likelihood that you will have between 10 and 30 visits
to the website?

Short answer: These data are normally distributed according to the g-q plot.

Question 8
The ammonia concentration in your wastewater treatment plant is measured every 6 hours. The data
for one year are available from the dataset website®.

1. Use a visualization plot to hypothesize from which distribution the data might come. Which
distribution do you think is most likely? Once you've decided on a distribution, use a qq-plot to test
your decision.

2. Estimate location and spread statistics assuming the data are from a normal distribution. You can
investigate using the fitdistr function in R, in the MASS package.

3. What if you were told the measured values are not independent. How does it affect your answer?
4. What is the probability of having an ammonia concentration greater than 40 mg/L when:

* you may use only the data (do not use any estimated statistics)

* you use the estimated statistics for the distribution?

Note: Answer this entire question using computer software to calculate values from the normal
distribution. But also make sure you can answer the last part of the question by hand, (when given
the mean and variance), and using a table of normal distributions.

Question 9

We take a large bale of polymer composite from our production line and using good sampling
techniques, we take 9 samples from the bale and measure the viscosity in the lab for each sample.
These samples are independent estimates of the population (bale) viscosity. We will believe these
samples follow a normal distribution (we could confirm this in practice by running tests and verifying
that samples from any bale are normally distributed). Here are 9 sampled values: 23, 19, 17, 18,
24, 26, 21, 14, 18.

* The sample average
* An estimate of the standard deviation
¢ What is the distribution of the sample average, Z? What are the parameters of that distribution?

Additional information: 1 use a group of samples and calculate the mean, 7, then I take another
group of samples and calculate another Z, and so on. Those values of Z are not going to be the
same, but they should be similar. In other words, the T also has a distribution. So this question
asks what that distribution is, and what its parameters are.

42 http://openmv.net/info/website-traffic
43 http://openmv.net/info/ammonia
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¢ Construct an interval, symbolically, that will contain, with 95% certainty (probability), the
population mean of the viscosity.

Additional information: To answer this part, you should move everything to z-coordinates first.
Then you need to find the points —c and +c in the following diagram that mark the boundary
for a 95% of the total area under the distribution. This region is an interval that will contain,
with 95% certainty, the population mean of the viscosity, . Write your answer in form:

LB < u < UB.

<
S}

0.3

0.2

0.1

0.0

-C +C

¢ Now assume that for some hypothetical reason we know the standard deviation of the bale’s
viscosity is o = 3.5 units, calculate the population mean’s interval numerically.

Additional information: In this part you are just finding the values of LB and UB

Short answer: Average = 20, standard deviation = 3.81

Question 10

You are responsible for the quality of maple syrup produced at your plant. Historical data show that
the standard deviation of the syrup viscosity is 40 cP. How many lab samples of syrup must you
measure so that an estimate of the syrup’s long-term average viscosity is inside a range of 60 cP, 95% of
the time? This question is like the previous one: except this time you are given the range of the interval
UB — LB, and you need to find n.

Short answer: 7 samples

Question 11

Your manager is asking for the average viscosity of a product that you produce in a batch process.
Recorded below are the 12 most recent values, taken from consecutive batches. State any assumptions,
and clearly show the calculations which are required to estimate a 95% confidence interval for the
mean. Interpret that confidence interval for your manager, who is not sure what a confidence interval
is.
Raw data:  [13.7, 14.9, 15.7, 16.1, 14.7, 15.2, 13.9, 13.9, 15.0, 13.0, 16.7, 13.2]
Mean: 14.67
Standard deviation: 1.16

Ensure you can also complete the question by hand, using statistical tables.
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Question 12

A new wastewater treatment plant is being commissioned and part of the commissioning report
requires a statement of the confidence interval of the biochemical oxygen demand (BOD)*. How many
samples must you send to the lab to be sure the true BOD is within a range of 2 mg/L, centered about
the sample average? If there isn’t enough information given here, specify your own numbers and
assumptions and work with them to answer the question.

Question 13

One of the questions we posed at the start of this chapter was: Here are the yields from a batch
bioreactor system? for the last 3 years (300 data points; we run a new batch about every 3 to 4 days).
1. What sort of distribution do the yield data have?

2. Arecorded yield value was less than 60%, what are the chances of that occurring? Express your
answer as: there’s a 1 in n chance of it occurring.

3. Which assumptions do you have to make for the second part of this question?

Question 14

One aspect of your job responsibility is to reduce energy consumption on the plant floor. You ask the
electrical supplier for the energy requirements (W.h) for running a particular light fixture for 24 hours.
They won't give you the raw data, only their histogram when they tested randomly selected bulbs (see
the data and code below).

> bin.centers <- ¢ (4025, 4075, 4125, 4175, 4225, 4275, 4325, 4375)
> bin.counts <- c(4, 19, 14, 5, 4, 1, 2, 1)
> barplot (bin.counts, names.arg=bin.centers, ylab="Number of bulbs (N=50)",

xlab="Energy required over 24 hours (W.h)", col="White", ylim=c(0,20))

“ https://en.wikipedia.org/wiki/Biochemical_oxygen_demand
45 http://openmv.net/info /batch-yields
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20

~50)
15

10

Number of bulbs (N

o ] ]

4025 4075 4125 4175 4225 4275 4325 4375

Energy required over 24 hours (W.h)

¢ Calculate an estimate of the mean and standard deviation, even though you don’t have the
original data.

* What is a confidence interval for the mean at 95% probability, stating and testing any
assumptions you need to make.

Short answer: mean = 4127, standard deviation = 78.9

Question 15
The confidence interval for the population mean takes one of two forms below, depending on whether

we know the variance or not. At the 90% confidence level, for a sample size of 13, compare and
comment on the upper and lower bounds for the two cases. Assume that s = o = 3.72.

T—p

—c < <
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T—p
— < <
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Question 16

A major aim of many engineers is/will be to reduce the carbon footprint of their company’s
high-profile products. Next week your boss wants you to evaluate a new raw material that requires 2.6
kg CO,
kg product
achieved with the current raw material. This is a large reduction in COs, given your current

less than the current material, but the final product’s brittleness must be the same as

production capacity of 51,700 kg of product per year. Manpower and physical constraints prevent you
from running a randomized test; you don’t have a suitable database of historical data either.

One idea you come up with is to use to your advantage the fact that your production line has three
parallel reactors, TK104, TK105, and TK107. They were installed at the same time, they have the same
geometry, the same instrumentation, efc; you have pretty much thought about every factor that might
vary between them, and are confident the 3 reactors are identical. Typical production schedules split
the raw material between the 3 reactors. Data on the website*® contain the brittleness values from the
three reactors for the past few runs on the current raw material.

1. Which two reactors would you pick to run your comparative trial on next week?

2. Repeat your calculations assuming pairing.

Short answer: You can do an ordinary test of differences, or a paired test. Also note that there are
missing data which reduce the degrees of freedom.

Question 17

Use the website traffic data?” from the dataset website:
e Write down, symbolically, the z-value for the difference in average visits on a Friday and Saturday:.
* Estimate a suitable value for the variance and justify your choice.

¢ What is the probability of obtaining a z-value of this magnitude or smaller? Would you say the
difference is significant?

e Pick any other 2 days that you would find interesting to compare and repeat your analysis.

Jun 1 Jun 20 Jul @ Jul 28 Aug 18

Solution

46 http://openmv.net/info/brittleness-index
47 http://openmv.net/info/website-traffic
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® Let our variable of interest be the difference between the average of the 2 groups: T — Tsat. This
variable will be distributed normally (why? - see the notes) according to
(fFri - fSa’t) - (MFri - //fSat)
O diff

Trri — Tsat ~ N (Whri — [isat; 03i5) - SO the z-value for this variable is: z =

. . 1 1 . .
e The variance of the difference, 0%, = 02 ( + ) , where o2 is the variance of the number of
Npri  Nsat

visits to the website on Friday and Saturday. Since we don’t know that value, we can estimate it
from pooling the 2 variances of each group. We should calculate first that these variances are
comparable (they are; but you should confirm this yourself (page 78)).

g

2 g2 (nEr — 1)sgy + (nsat — 1)53,
P N — 1+ nga — 1
29 x 45.56 + 29 x 48.62
58

=47.09

* The z-value calculated from this pooled variance is:

20.77 — 15.27

1 1
47.09 | — + =
<30 i 30)
But since we used an estimated variance, we cannot say that z comes from the normal distribution
anymore. It now follows the t-distribution with 58 degrees of freedom (which is still comparable to
the normal distribution - see question 7 below). The corresponding probability that z < 3.1 is

99.85%, using the t-distribution with 58 degrees of freedom. This difference is significant; there is a
very small probability that this difference is due to chance alone.

* The code was modified to generate the matrix of z-value results in the comments below. The largest
difference is between Sunday and Wednesday, and the smallest difference is between Monday and
Tuesday.

website <- read.csv('http://openmv.net/file/website-traffic.csv’")
attach (website)

visits.Mon <- Visits[DayOfWeek=="Monday"]
visits.Tue <- Visits[DayOfWeek=="Tuesday"]
visits.Wed <- Visits[DayOfWeek=="Wednesday"]
visits.Thu <- Visits[DayOfWeek=="Thursday"]
visits.Fri <- Visits[DayOfWeek=="Friday"]
visits.Sat <- Visits[DayOfWeek=="Saturday"]
visits.Sun <- Visits[DayOfWeek=="Sunday"]

# Look at a boxplot of the data from Friday and Saturday
bitmap ('website-boxplot.png', type="png256", width=7, height=7,
res=250, pointsize=14)
par (mar=c(4.2, 4.2, 0.2, 0.2)) # (bottom, left, top, right)
boxplot (visits.Fri, visits.Sat, names=c("Friday", "Saturday"), ylab="Number of visits",
cex.lab=1.5, cex.main=1.8, cex.sub=1.8, cex.axis=1.8)
dev.off ()

# Use the "group_difference" function from question 4
group_difference (visits.Sat, visits.Fri)

# z = 3.104152

# t.critical = 0.9985255 (1-0.001474538)

# All differences: z-values

# 7777777777777777777777777777

# Mon Tue wed Thu Fri Sat Sun
# Mon 0.0000000 NA NA NA NA NA NA
# Tue -0.2333225 0.000000 NA NA NA NA NA

(continues on next page)
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(continued from previous page)

0.496627 0.00 NA NA

1.070370 NA NA

2.68 NA NA

5.552498 0.000000 NA
# Sun 3.9917201 4.141035 4 -1 58885 0
Question 18

You plan to run a series of 22 experiments to measure the economic advantage, if any, of switching to a
corn-based raw material, rather than using your current sugar-based material. You can only run one
experiment per day, and there is a high cost to change between raw material dispensing systems.
Describe two important precautions you would implement when running these experiments, so you
can be certain your results will be accurate.

Question 19

There are two analytical techniques for measuring biochemical oxygen demand (BOD)*. You wish to
evaluate the two testing procedures, so that you can select the test which has lower cost, and fastest
turn-around time, but without a compromise in accuracy. The table contains the results of the each
test, performed on a sample that was split in half.

1. Is there a statistical difference in accuracy between the two methods?

2. Review the raw data and answer whether there is a practical difference in accuracy.

Dilution method Manometric method

11 25
26 3

18 27
16 30
20 33
12 16
8 28
26 27
12 12
17 32
14 16

48 https://en.wikipedia.org/wiki/Biochemical_oxygen_demand
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Question 20

Plot the cumulative probability function for the normal distribution and the ¢-distribution on the same

plot.
* Use 6 degrees of freedom for ¢-distribution.

* Repeat the plot for a larger number of degrees of freedom.

* At which point is the ¢-distribution indistinguishable from the normal distribution?

e What is the practical implication of this result?

Solution

z <- seq (-5, 5, 0.1)

norm <- pnorm(z)

bitmap ('normal-t-comparison.png', type="png256", width=12, height=7,
res=300, pointsize=14)

par (mar=c(4.2, 4.2, 2.2, 0.2))

layout (matrix (c(1,2), 1, 2))

lot (z, norm, type="p", ch=".", cex=5, main="Normal and t-distribution
P yp IS P

ylab="Cumulative probability")
lines(z, pt(z, df=6), type="1", lwd=2)

(df=6)",

legend (0.5, y=0.35, legend=c("Normal distribution", "t-distribution (df=8)"),

pch=c(".", "-"), pt.cex=c(5, 2))

plot (z, norm, type="p", pch=".", cex=5, main="Normal and t-distribution
ylab="Cumulative probability")
lines(z, pt(z, df=35), type="1", lwd=2)

(df=35)",

legend (0.5, y=0.35, legend=c("Normal distribution", "t-distribution (df=35)"),

pch=c(".", "-"), pt.cex=c (5, 2))
dev.off ()
Normal and t-distribution (df=6) Normal and t-distribution (df=35)
e e
«Q _| «Q _|
o o
= =z
3 3
§ s g 2
[e] [e]
a a
2 2
S < S <
g © g ©
3 >
© = Normal distribution © = Normal distribution
— t-distribution (df=8) — t-distribution (df=35)
N N
o o
o o
o o 7]
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
z z

The above source code and figure output shows that the ¢-distribution starts being indistinguishable

94 Chapter 2. Univariate Data Analysis




Release 10d109

from the normal distribution after about 35 to 40 degrees of freedom. This means that when we deal
with large sample sizes (over 40 or 50 samples), then we can use critical values from the normal
distribution rather than the t-distribution. Furthermore, it indicates that our estimate of the variance is
a pretty good estimate of the population variance for largish sample sizes.

Question 21

Explain why tests of differences are insensitive to unit changes. If this were not the case, then one
could show a significant difference for a weight-loss supplement when measuring waist size in
millimetres, yet show no significant difference when measuring in inches!

Question 22

A food production facility fills bags with potato chips. The advertised bag weight is 35.0 grams. But,
the current bagging system is set to fill bags with a mean weight of 37.4 grams, and this done so that
only 1% of bags have a weight of 35.0 grams or less.

¢ Back-calculate the standard deviation of the bag weights, assuming a normal distribution.

* Out of 1000 customers, how many are lucky enough to get 40.0 grams or more of potato chips in
their bags?

Short answer: standard deviation = 1.03 grams

Question 23

A food production facility fills bags with potato chips with an advertised bag weight of 50.0 grams.

1. The government’s Weights and Measures Act requires that at most 1.5% of customers may receive a
bag containing less than the advertised weight. At what setting should you put the target fill weight
to meet this requirement exactly? The check-weigher on the bagging system shows the long-term
standard deviation for weight is about 2.8 grams.

2. Out of 100 customers, how many are lucky enough to get 55.0 grams or more of potato chips in their
bags?

Question 24

The following confidence interval is reported by our company for the amount of sulphur dioxide
measured in parts per billion (ppb) that we send into the atmosphere.

123.6 ppb < p < 240.2 ppb

Only n = 21 raw data points (one data point measured per day) were used to calculate that 90%
confidence interval. A z-value would have been calculated as an intermediate step to get the final

. . T
confidence interval, where z =

=k
s/v/n’
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1. What assumptions were made about those 21 raw data points to compute the above confidence
interval?

2. Which lower and upper critical values would have been used for z? That is, which critical values
are used before unpacking the final confidence interval as shown above.

3. What is the standard deviation, s, of the raw data?

4. Today’s sulphur dioxide reading is 460 ppb and your manager wants to know what’s going on; you
can quickly calculate the probability of seeing a value of 460 ppb, or greater, to help judge the
severity of the pollution. How many days in a 365 calendar-day year are expected to show a
sulphur dioxide value of 460 ppb or higher?

5. Explain clearly why a wide confidence interval is not desirable, from an environmental perspective.

Solution
1. The 21 data points are independent and come from any distribution of finite variance.

2. From the t-distribution at 20 degrees of freedom, with 5% in each tail: ¢, = 1.72 =gt (0. 95,
df=20). The t-distribution is used because the standard deviation is estimated, rather than being a
population deviation.

3. The standard deviation may be calculated from:

UB—LB =2102-1236 =2 % &= = (2)(1’72)ﬁ
_ (116)(vn)
(2)(1.72)
s =154.5ppb

Note the very large standard deviation relative to the confidence interval range. This is the reason
why so many data points were taken (21), to calculate the average, because the raw data comes from
a distribution with such a large variation.

An important note here is the large estimated value for the standard deviation and realized it was
so wide, that it would imply the distribution produced values with negative sulphur dioxide
concentration (which is physically impossible). However, note that when dealing with large
samples (21 in this case), the distinction between the normal and the ¢-distribution is minimal.
Further, the raw data are not necessarily assumed to be from the normal distribution, they could be
from any distribution, including one that is heavy-tailed, such as the F-distribution?’ (see the yellow
and green lines in particular).

4. The probability calculation requires a mean value. Our best guess for the mean is the midpoint of

the confidence interval, which is always symmetric about the estimated process mean,
240.2 - 123.6

T = —a + 123.6 = 181.9. Note that this is not the value for p, since i is unknown.
460 — 181.9
= .
‘ 154.5 %0

Probabilityis 1 - pt (1.8, df=20) =1-0.9565176 = 0.0434824, or about 0.0434824 x 365 = 15.9,
or about 16 days in the year (some variation is expected, if you have used a statistical table)

5. A wide confidence interval implies that our sulphur dioxide emissions are extremely variable (the
confidence interval bounds are a strong function of the process standard deviation). Some days we

49 https: //en.wikipedia.org/wiki/File:F_distributionPDF.png
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are putting more pollution up into the air and balancing it out with lower pollution on other days.
Those days with high pollution are more environmentally detrimental.

Question 25

A common unit operation in the pharmaceutical area is to uniformly blend powders for tablets. One
such unit is illustrated below (figure taken from Wikipedia®). In this question we consider blending
an excipient (an inactive magnesium stearate base), a binder, and the active ingredient. The mixing
process is tracked using a wireless near infrared (NIR) probe embedded in a V-blender. The mixer is
stopped when the NIR spectra become stable. A new supplier of magnesium stearate is being
considered that will save $ 294,000 per year.

The 15 most recent runs with the current magnesium stearate supplier had an average mixing time of
2715 seconds, and a standard deviation of 390 seconds. So far you have run 6 batches from the new
supplier, and the average mixing time of these runs is 3115 seconds with a standard deviation of 452
seconds. Your manager is not happy with these results so far - this extra mixing time will actually cost
you more money via lost production.

The manager wants to revert back to the original supplier, but is leaving the decision up to you; what
would be your advice? Show all calculations and describe any additional assumptions, if required.

Short answer: This problem is open-ended: pay attention to having a significant difference vs a
practical difference.

50 https: //en.wikipedia.org /wiki/Industrial_mixer
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Question 26

List an advantage of using a paired test over an unpaired test. Give an example, not from the notes,
that illustrates your answer.

Question 27

An unpaired test to distinguish between group A and group B was performed with 18 runs: 9 samples
for group A and 9 samples for group B. The pooled variance was 86 units.

Also, a paired test on group A and group B was performed with 9 runs. After calculating the paired
differences, the variance of these differences was found to be 79 units.

Discuss, in the context of this example, an advantage of paired tests over unpaired tests. Assume 95%
confidence intervals, and that the true result was one of “no significant difference between method A
and method B”. Give numeric values from this example to substantiate your answer.

Question 28

You are convinced that a different impeller (mixing blade) shape for your tank will lead to faster, i.e.
shorter, mixing times. The choices are either an axial blade or a radial blade, as shown in this figure
from Wikipedia®'.

v
1

1<
A

Il

Before obtaining approval to run some experiments, your team wants you to explain how you will
interpret the experimental data. Your reply is that you will calculate the average mixing time from
each blade type and then calculate a confidence interval for the difference. A team member asks you
what the following 95% confidence intervals would mean:

1. —453 seconds < fiaxial — HRadial < 390 seconds
2. —21 seconds < paxial — MRadial < 187 seconds

For both cases (a) explain what the confidence interval means in the context of this experiment, and (b)
whether the recommendation would be to use radial or axial impellers to get the shortest mixing time.

51 https://en.wikipedia.org/wiki/Impeller
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3. Now assume the result from your experimental test was
—21 seconds < paxial — HRadial < 187 seconds; how can you make the confidence interval narrower?

Question 29
The paper by PJ Rousseeuw, “Tutorial to Robust Statistics®?”, Journal of Chemometrics, 5, 1-20, 1991
discusses the breakdown point of a statistic.

1. Describe what the breakdown point is, and give two examples: one with a low breakdown point,
and one with a high breakdown point. Use a vector of numbers to help illustrate your answer.

2. What is an advantage of using robust methods over their “classical” counterparts?

Solution

1. PJ Rousseeuw defines the breakdown point on page 3 of his paper as “... the smallest fraction of

the observations that have to be replaced to make the estimator unbounded. In this definition one

can choose which observations are replaced, as well as the magnitude of the outliers, in the least
favourable way”.

A statistic with a low breakdown point is the mean, of the n values used to calculate the mean, only

1 needs to be replaced to make the estimator unbounded; i.e. its breakdown point is 1/n. The
median though has a breakdown point of 50%, as one would have to replace 50% of the n data
points in the vector before the estimator becomes unbounded.

Use this vector of data as an example: [2,6,1,9151616, —4, 2]. The mean is 1525270, while the
median is 2.

2. * Robust methods are insensitive to outliers, which is useful when we need a measure of location

or spread that is calculated in an automated way. It is increasingly prevalent to skip out the

“human” step that might have detected the outlier, but our data sets are getting so large that we

can’t possibly visualize or look for outliers manually anymore.

* As described in the above paper by Rousseeuw, robust methods also emphasize outliers. Their

“lack of sensitivity to outliers” can also be considered an advantage.

Question 30

1. Why are robust statistics, such as the median or MAD, important in the analysis of modern data
sets? Explain, using an example, if necessary.

2. What is meant by the break-down point of a robust statistic? Give an example to explain your
answer.

Solution

1. Data sets you will have to deal with in the workplace are getting larger and larger (lengthwise), and

processing them by trimming outliers (see Question 5 later) manually is almost impossible. Robust

statistics are a way to summarize such data sets without point-by-point investigation.

52 https://dx.doi.org/10.1002 /cem.1180050103
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This is especially true for automatic systems that you will build that need to (a) acquire and (b)
process the data to then (c) produce meaningful output. These systems have to be capable of
dealing with outliers and missing values.

2. The breakdown point is the number of contaminating data points required before a statistic
(estimator) becomes unbounded, i.e. useless. For example, the mean requires only 1 contaminating
value, while the median requires 50% + 1 data points before it becomes useless.

Consider the sequence [2,6,1,91511, —4, 2]. The mean is 15253, while the median is 2, which is a far
more useful estimate of the central tendency in the data.

Question 31

Recall that p = E(z) = % Y wand V{z} = E{(z — p)*} =% = + 3 (z — p)*.
1. What is the expected value thrown of a fair, 12-sided dice?
2. What is the expected variance of a fair, 12-sided dice?

3. Simulate 10,000 throws in a software package (R, MATLAB, or Python) from this dice and see if your
answers match those above. Record the average value from the 10,000 throws, call that average .

4. Repeat the simulation 10 times, calculating the average value of all the dice throws. Calculate the
mean and standard deviation of the 10 T values and comment whether the results match the
theoretically expected values.

Solution
The objective of this question is to recall basic probability rules.

1. Each value on the dice is equally probable, so the expected value thrown will be:

12 12
1
£(X) = inp(a:i) :P(I)ZI‘L = E(1_|_2_|_..._|_12) - 65
=1 i=1

This value is the population mean, .

2. Continuing the notation from the above question we can derive the expected variance as,

V(X) = %Z (2 — p)? = %2 [(1-6.5)>+(2-6.5)*+ ...+ (12— 6.5)*] ~11.9167

3. Simulating 10,000 throws corresponds to 10,000 independent and mutually exclusive random
events, each with an outcome between 1 and 12. The sample mean and variance from my sample
was calculated using this code in R:

T = 6.5219
s2 =12.03732
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Set the random seed to a known point, to allow
# us to duplicate pseudorandom results
set.seed(13)

x.data <- as.integer (runif (10000, 1, 13)

# Verify that it is roughly uniformly distributed
# across 12 bins
hist (x.data, breaks=seq(0,12))

x.mean <- mean (x.data)
x.var <- var (x.data)

c(x.mean, x.var)

4. Repeating the above simulation 10 times (i.e. 10 independent experiments) produces 10 different
estimates of 1 and o2. Note, your answer should be slightly different, and different each time you
run the simulation.

N <- 10

n <- 10000

X.mean <- numeric (N)

x.var <- numeric (N)

for (1 in 1:N) {
x.data <- as.integer(runif(n, 1, 13))
x.mean[i] <- mean(x.data)
x.var[1i] <- var(x.data)

}

X.mean

# [1] 6.5527 6.4148 6.4759 6.4967 6.4465

# [6] 6.5062 6.5171 6.4671 6.5715 6.5485

xX.var

# [1] 11.86561 11.84353 12.00102 11.89658 11.82552

# [6] 11.83147 11.95224 11.88555 11.81589 11.73869

# You should run the code several times and verify whether
# the following values are around their expected, theoretical
# levels. Some runs should be above, and other runs below
# the theoretical values.

# This is the same as increasing "N" in the first line.

# Is it around 6.57?

mean (x.mean)

# Is it around 11.91677
mean (x.var)

# Is it around \sigma"2 / n = 11.9167/10000 = 0.00119167 ?

var (x.mean)

Note that each Z ~ N (y, 0% /n), where n = 10000. We know what o is in this case: it is our
theoretical value of 11.92, calculated earlier, and for n = 10000 samples, our theoretical expectation
is that 7 ~ N (6.5,0.00119167).

Calculating the average of those 10 means, let’s call that 7, shows a value close to 6.5, the theoretical
mean.

Calculating the variance of those 10 means shows a number around 0.00119167, as expected.
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Question 32

Removed. Was a duplicate of a prior question (number 13).

Question 33
1. At the 95% confidence level, for a sample size of 7, compare and comment on the upper and lower
bounds of the confidence interval that you would calculate if:
a) you know the population standard deviation
b) you have to estimate it for the sample.
Assume that the calculated standard deviation from the sample, s matches the population o = 4.19.

2. Asafollow up, overlay the probability distribution curves for the normal and ¢-distribution that
you would use for a sample of data of size n = 7.

3. Repeat part of this question, using larger sample sizes. At which point does the difference between
the ¢- and normal distributions become practically indistinguishable?

4. What is the implication of this?

Question 34

Engineering data often violate the assumption of independence. In this question you will create
(simulate) sequences of autocorrelated data, i.e. data that lack independence, and investigate how lack
of independence affects our results.

The simplest form of autocorrelation is what is called lag-1 autocorrelation, when the series of values,
xy, is correlated with itself only 1 step back in time, z5_:

Ty = QT—1 + ag

The aj, value is a random error and for this question let ay, ~ N (u = 0,02 = 25.0).
Create 3 sequences of autocorrelated data with:

A: ¢ = +0.7 (positively correlated)

B: ¢ = 0.0 (uncorrelated data)

C: ¢ = —0.6 (negatively correlated)

For case A, B and C perform the following analysis. Repeat the following 1000 times (let
i=1,2,...,1000):

* Create a vector of 100 autocorrelated = values using the above formula, using the current level of ¢
¢ (Calculate the mean of these 100 values, call it Z; and store the result

At this point you have 1000 T; values for case A, another 1000 z; values for case B, and similarly for
case C. Now answer these questions:

1. Assuming independence, which is obviously not correct for 2 of the 3 cases, nevertheless, from
which population should Z be from, and what are the 2 parameters of that population?

2. Now, using your 1000 simulated means, estimate those two population parameters.
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3. Compare your estimates to the theoretical values.

Comment on the results, and the implication of this regarding tests of significance (i.e. statistical tests
to see if a significant change occurred or not).

Solution

We expect that case B should match the theoretical case the closest, since data from case B are truly
independent, since the autocorrelation parameter is zero. We expect case A and C datasets, which
violate that assumption of independence, to be biased one way or another. This question aims to see
how they are biased.

nsim <- 1000 # Number of S
x.mean <- numeric(nsim) # An empty vector to store the results

set.seed(37) # s can reproduce these results
for (1 in 1l:nsim)

{

N <- 100 # numl in autocorrelated sequence
phi <- +0.7 # B and C *x
spread <- 5.0 # iables
x <- numeric (N)
x[1] = rnorm(l, mean=0, sd=spread)
for (k in 2:N) {

x[k] <= phixx[k-1] + rnorm(l, mean=0, sd=spread)

}
x.mean[i] <- mean (x)
}
theoretical <- sqgrt (spread”2/N)

4

%)

how some output to the user

c(theoretical, mean (x.mean), sd(x.mean))

You should be able to reproduce the results I have below, because the above code uses the
set.seed(...) function, which forces R to generate random numbers in the same order on my
computer as yours (as long as we all use the same version of R).

e Case A: 0.50000000, 0.00428291, 1.65963302
e CaseB:0.50000000, 0.001565456, 0.509676562
e CaseC:0.50000000, 0.0004381761, 0.3217627596

The first output is the same for all 3 cases: this is the theoretical standard deviation of the distribution
from which the z; values come: z; ~ N (u, o%/N ), where N = 100, the number of points in the
autocorrelated sequence. This result comes from the central limit theorem, which tells us that Z; should
be normally distributed, with the same mean as our individual z-values, but have smaller variance.
That variance is 02 /N, where ¢ is the variance of the distribution from which we took the raw x
values. That theoretical variance value is 25/100, or theoretical standard deviation of 1/25/100 = 0.5.

But, the central limit theorem only has one crucial assumption: that those raw « values are
independent. We intentionally violated this assumption for case A and C.

We use the 1000 simulated values of Z; and calculate the average of the 1000 Z; values and the
standard deviation of the 1000 Z; values. Those are the second and third values reported above.

We see in all cases that the mean of the 1000 values nearly matches 0.0. If you run the simulations
again, with a different seed, you will see it above zero, and sometimes below zero for all 3 cases. So we
can conclude that lack of independence does not affect the estimated mean.
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The major disagreement is in the variance though. Case B matches the theoretical variance; data that
are positively correlated have an inflated standard deviation, 1.66; data that are negatively correlated
have a deflated standard deviation, 0.32 when ¢ = —0.6.

This is problematic for the following reason. When doing a test of significance, we construct a
confidence interval:

—Ct ror “+c
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We use an estimated standard deviation, s, whether that is found from pooling the variances or found
separately (it doesn’t really matter), but the main problem is that s is not accurate when the data are
not independent:

¢ For positive correlations (quite common in industrial data): our confidence interval will be too
wide, likely spanning zero, indicating no statistical difference, when in fact there might be one.

¢ For negative correlations (less common, but still seen in practice): our confidence interval will be
too narrow, more likely to indicate there is a difference.

The main purpose of this question is for you to see how use to understand what happens when a key
assumption is violated. There are cases when an assumption is violated, but it doesn’t affect the result
too much.

In this particular example there is a known theoretical relationship between ¢ and the

inflated /deflated variance that can be derived (with some difficulty). But in most situations the affect
of violating assumptions is too difficult to derive mathematically, so we use computer power to do the
work for us: but then we still have to spend time thinking and interpreting the results.

Question 35

Sulphur dioxide is a byproduct from ore smelting, coal-fired power stations, and other sources.

These 11 samples of sulphur dioxide, SO,, measured in parts per billion [ppb], were taken from our
plant. Environmental regulations require us to report the 90% confidence interval for the mean SO,
value.

180, 340, 220, 410, 101, 89, 210, 99, 128, 113, 111

1. What is the confidence interval that must be reported, given that the sample average of these 11
points is 181.9 ppb and the sample standard deviation is 106.8 ppb?

2. Why might Environment Canada require you to report the confidence interval instead of the mean?
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Question 36

A concrete slump test is used to test for the fluidity, or workability, of concrete. It’s a crude, but quick
test often used to measure the effect of polymer additives that are mixed with the concrete to improve
workability.

The concrete mixture is prepared with a polymer additive. The mixture is placed in a mold and filled
to the top. The mold is inverted and removed. The height of the mold minus the height of the
remaining concrete pile is called the “slump”, as shown in this figure from Wikipedia®.

Collapse True slump

Your company provides the polymer additive, and you are developing an improved polymer
formulation, call it B, that hopefully provides the same slump values as your existing polymer, call it
A. Formulation B costs less money than A, but you don’t want to upset, or lose, customers by varying
the slump value too much.

1. You have a single day to run your tests (experiments). Preparation, mixing times, measurement and
clean up take 1 hour, only allowing you to run 10 experiments. Describe all precautions, and why
you take these precautions, when planning and executing your experiment. Be very specific in your
answer (use bullet points).

2. The following slump values were recorded over the course of the day:

Additive  Slump value [cm]

5.2
3.3
5.8
4.6
6.3
5.8
4.1
6.0
5.5
4.5

T >T > > >

What is your conclusion on the performance of the new polymer formulation (system B)? Your

53 https://en.wikipedia.org/wiki/File:Types_of_concrete_slump.jpg
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conclusion must either be “send the polymer engineers back to the lab” or “let’s start making
formulation B for our customers”. Explain your choice clearly.

To help you, T4 = 4.6 and s4 = 0.97. For system B: Tp = 5.62 and sp = 0.69.

Note: In your answer you must be clear on which assumptions you are using and, where necessary,
why you need to make those assumptions.

3. Describe the circumstances under which you would rather use a paired test for differences between
polymer A and B.

4. What are the advantage(s) of the paired test over the unpaired test?

5. Clearly explain which assumptions are used for paired tests, and why they are likely to be true in
this case?

6. The slump tests were actually performed in a paired manner, where pairing was performed based
on the cement supplier. Five different cement suppliers were used:

Supplier  Slump value [cm] from A Slump value [cm] from B

1 52 5.8
2 3.3 4.5
3 4.6 6.0
4 5.8 5.5
5 4.1 6.2

Use these data, and provide, if necessary, an updated recommendation to your manager.

Question 37
You are planning a series of experiments to test alternative conditions in a store and see which
conditions lead to higher sales.

Which practical steps would you take to ensure independence in the experimental data, when
investigating:

1. adjustable halogen lighting: A = soft and dim lighting and B = brighter lighting

2. alternative shelving: A = solid white metal shelves and B = commercial stainless steel racking

Solution
By Cameron DiPietro and Andrew Haines (2012 class)

Randomization is expensive and inconvenient; however, the high cost is to ensure that the results
attained in each study are not affected by unmeasured disturbances. We also have to take care to
control measured disturbances as far as possible.

1. To ensure independence when investigating adjustable halogen lighting: A = soft and dim lighting
and B = brighter lighting, the following experiments and conditions may be run:

¢ All light fixtures are changed correctly during the swap from A to B and the same scenario from
Bto A
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Keep prices of all products the same during days with A lighting and days with B lighting
Do not inform customers of A to B swap or B to A swap in lighting

Ensure product quality

Use the same amount of voltage throughout the store for each lighting arrangement

Keep the store stocked the same for everyday during experiment

Use random days for each light fixture

Maintain the same advertisements for the store during the study

Do not inform employees of lighting swaps to ensure identical employee to customer
relationships

Compensate for any holiday or unexpected short days of store hours

Have employees work randomized shifts to ensure no patterns in employees moods during light
fixture swaps

Employees have the same mindset to customers (if a retail business) during both A and B
lighting arrangements

Assume all data from A and B light fixtures have identical population variance

If lighting A and B are installed simultaneously, then it might be possible to even run different tests

during the day, randomly allocated.

To ensure independence when investigating alternative shelving: A = solid white metal shelves and

B = commercial stainless steel racking, the following experiments and conditions may be run:

Shelving size remains the same and in the same location

Identical product placement on both shelves A and B, if possible

Being able to control everything other than the variable being studied of shelves
Distances between shelves identical

Ensure employees have the same mindset during each customer visit

Identical number of items per shelf

Same shelf distances from checkout

Clean each shelf in the same manner for both A and B

Keep prices and sales the same throughout the study period

Clearly the shelf study cannot be easily implemented, since the logistics of unstocking, removing shelf

A, replacing with shelf B and restocking them is extremely costly.

One thing to consider in such cases is to run the experiments in two separate stores that are as similar

as possible in all other respects (e.g. built in the area with similar profiles of customers, similar store

layout, etc.).
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Question 38

This question gives you exposure to analyzing a larger data set than seen in the preceding questions.

Your manager has asked you to describe the flow rate characteristics of the overhead stream leaving
the top of the distillation column® at your plant. You are able to download one month of data,
available from this website®, from 1 March to 31 March, taken at one minute intervals to answer this
question.

54 https://en.wikipedia.org/wiki/Fractionating_column
55 http://openmv.net/info/distillate-flow
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CHAPTER 3

| PROCESS MONITORING

3.1 Process monitoring in context

In the first section we learned about visualizing data (page 1), then we moved on to reviewing univariate
statistics (page 29). This section now combines both topics, showing how to create a system that
monitors a single, univariate, value from any process. These monitoring systems are easily
implemented online, and generate great value for companies that use them in day-to-day production.
This is one of their greatest advantages: almost no training is required to interpret the visualization
and secondly the human eye can quickly pick up any patters or trends in the plots; both expected and
unexpected patterns.

Monitoring charts are a graphical tool, enabling anyone to rapidly detect a problem by visual analysis.
The next logical step after detection of a problem is to diagnose it, but we will cover diagnosis in the
section on latent variable models (page 315).

This section is the last section where we deal with univariate data; after this section we start to use and
deal with 2 or more variables.

3.1.1 Usage examples

The material in this section is used whenever you need to rapidly detect problems. It has tangible
application in many areas - in fact, you have likely encountered these monitoring charts in areas such
as a hospital (monitoring a patient’s heart beat), stock market charts (for intraday trading), or in a
processing /manufacturing facility (control room computer screens).

¢ Co-worker: We need a system to ensure an important dimension on our product is stable and
consistent over the entire shift.

* Yourself: We know that as the position of a manufacturing robot moves out of alignment that our
product starts becoming inconsistent; more variable. How can we quickly detect this slow drift in
alignment and predict when to stop the process and perform preventative maintenance?

* Manager: the hourly average profit, and process throughput is important to the head-office; can we
create a system for them to track that?
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* Potential customer: what is your process capability - we are looking for a new supplier that can
provide a low-variability raw material for us with C, of at least 1.6, preferably higher.

Note: process monitoring is mostly reactive and not proactive. So it is suited to incremental process
improvement, which is typical of most improvements. However, using the monitoring charts to make
proactive changes to avoid a bigger problem later in time is certainly possible by adding additional
rules and calculations to the plots. For example, rules to forecast a few steps ahead, with prediction
intervals, can be easily added.

We point out in the next section (page 111) that process monitoring is not a feedback control system. So
that section should be read in the context of thinking reactively and proactively (in a feed forward
anticipatory manner).

3.1.2 What we will cover

We will consider 3 main charts after introducing some basic concepts: Shewhart charts, CUSUM charts
and (exponentially weighted moving average) charts. The EWMA chart has an adjustable parameter
that captures the behaviour of a Shewhart chart at one extreme and a CUSUM chart at the other
extreme, or a combination of both is possible by settings this parameter on a sliding scale.

3.1.3 Concepts

Concepts and acronyms that you must be familiar with by the end of this section:
e Shewhart chart, CUSUM chart and EWMA chart

¢ Phase 1 and phase 2 when building a monitoring system

¢ False alarms

¢ Type 1 and type 2 errors

¢ LCL and UCL

¢ Target

e C,and Cpx

¢ Qutliers

* Real-time implementation of monitoring systems

3.2 References and readings

1. Recommended: Box, Hunter and Hunter, Statistics for Experimenters, Chapter 14 (2nd edition)

2. Recommended: Montgomery and Runger, Applied Statistics and Probability for Engineers.

3. Hunter, ].S. “The Exponentially Weighted Moving Average®®”

203 - 210, 1986.

, Journal of Quality Technology, 18 (4) p

4. MacGregor, ].F. “Using On-Line Process Data to Improve Quality: Challenges for Statisticians™”,

International Statistical Review, 65, p 309-323, 1997.

%6 https: //asq.org/quality-resources/articles/ the-exponentially-weighted-moving-average?id=27d7a4ac83cf47a18df2d09729369f41

57 https: //dx.doi.org/10.1111/j.1751-5823.1997.tb00311.x
tp g J
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3.3 What is process monitoring about?

Most industries have now realized that product quality is not an option. There was historical thinking
that quality is the equivalent of “gold-plating” your product, but that has mostly fallen away. Product
quality is not always a cost-benefit trade-off: it is beneficial to you in the long-term to improve your
product quality, and for your customers as well.

As we spoke about in the univariate review section (page 29), good quality products (low variability)
actually boost your profits by lowering costs in the long term. You have lower costs when you do not
have to scrap off-specification product, or have to rework bad product. You have increased long-term
sales with more loyal customers and improved brand reputation as a reliable and consistent supplier.

An example that most people in North America can relate to is the rise in Asian car manufacturers’
market share, at the expense American manufacturers” market share. The market has the perception
that Asian cars are more reliable than American cars and resale rates certainly reflect that. The
perception has started to change since 2010, as North American manufacturers have become more
quality conscious. That is an illustration of how lack of variability in your product can benefit you.

In order to achieve this high level of final product quality, our systems should be producing low
variability product at every step of the manufacturing process. Rather than wait till the end of the
process to discover poor quality product, we should be monitoring, in real-time, the purchased raw
materials and also the intermediate steps in our process. When we discover unusual variability the
lofty aim is to make (permanent) process adjustments to avoid that variability from ever occurring
again.

Notice here that process monitoring is not intended to be automatic feedback control. It has the same
principles of quantifying unusual operation (errors) and reacting to them in some way, but the
intention with process monitoring is:

¢ that any process adjustments are infrequent [not frequently on a set cycle, as feedback control does],
¢ these adjustments are made manually [not automatically with actuators],
¢ and take place due to special causes [not due to regularly occurring process disturbances].

As seen by the items in square brackets above, automatic feedback control is applied continuously by
computer systems and makes short-term, temporary changes to the system to keep it at the desired
target (called the setpoint) in the face of process disturbances. Process monitoring is very different
therefore to feedback control.

Note that process monitoring is often called statistical process control (SPC). This can lead to
unnecessary confusion with process control, i.e. the design and implementation of feedback control,
feed-forward control and other automated control systems. We will not use the term SPC, rather we
will use the term process monitoring.
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3.3.1 Monitoring charts

We use monitoring charts, also called control charts, to display and detect this unusual variability. A
monitoring chart is a display of one value (variable), against time, or in sequence order. These
time-based plots also show some additional information: usually a target value, and one or more
limits lines are superimposed on the plot. The plots are most useful when displayed in real-time, or
close to real-time. There are various technical ways to express what a monitoring chart does exactly,
but a general definition is that a monitoring chart helps you detect outliers and other unusual
time-based behaviour.

The key points are that a monitoring chart:
* is most often a time-series plot, or some sort of sequence plot,
* atarget value (center line) may be shown,

¢ one or more limit lines are shown, such as the UCL (upper control limit) or LCL (lower control
limit),

e they are displayed and updated in real-time, or as close to real-time as possible, so that the chart
appears to move from right to left.

Here is an example that shows these properties.

Tank temperature, TC241 [degC]
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3.3.2 General approach

Monitoring charts are developed in 2 phases. You will see the terminology of:

¢ Phase 1: building and testing the chart from historical data that you have collected. This phase is
performed off-line, it is very iterative, and you will spend most of your time here. The primary
purpose of this phase is to

- find portions of the data that are from stable operation
— use these stable portions to calculate suitable control chart limits
- ensure that your chart works as expected based on historical data

¢ Phase 2: We use the monitoring chart on new, fresh data from the process. This phase is
implemented with computer hardware and software for real-time display of the charts. This phase
is skipped if the phase 1 testing is not successful (e.g. too many false alarms). We discuss reasons for
failure in the section on judging the chart’s performance (page 118).
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3.3.3 What should we monitor?

Any variable can be monitored. However, the purpose of process monitoring is so that you can react
early to bad, or unusual operation. This implies we should monitor variables as soon as they become
available, preferably in real-time. They are more suitable than variables that take a long time to acquire
(e.g. laboratory measurements). We should not have to wait to the end of the production line to find
our process was out of statistical control.

Data/measurements available at the start of your process, suc as raw material data from your supplier
should also be monitored as soon as it is available, e.g. when received by your company, or even
earlier - before the supplier ships it to you.

Intermediate variables measured from sensors at all points along the production process are (a)
available much more frequently and without delay, (b) are more precise, (c) are usually more
meaningful to the operating staff than final quality variables from the lab, and (d) contain the
“fingerprint” of the fault, helping the engineers with diagnosis of what the problem is and point to
which part(s) of the process need adjustment (see MacGregor, 1997).

Note that we do not have to monitor variables that are measured only from on-line sensors. The
variable could be a calculation made from the on-line measurements.

For example, an energy balance could be calculated from various thermocouples on the process and
the degree of mismatch in the energy balance could be critical to quality. For example, the mismatch
could indicate an unexpected source of heat into or out of the process - so monitor that mismatch,
rather than the raw temperature data. Similarly, a mass balance can be monitored in real-time, such as
a total mass balance, or a carbon (or other elemental) balance. This is common in the mining industry
and bio-processing industries.

Discuss one of these unit operations with your colleague. Which variables would you monitor?
¢ Waste water treatment process

¢ Tablet/pharmaceutical manufacturing

¢ QOil and gas (e.g. a distillation column)

¢ Food-processing or bio-engineering (e.g. fermentation) unit

* Mineral processing plant (e.g. a flotation cell)

¢ Plastics processing (e.g. a twin-screw extruder)

3.3.4 In-control vs out-of-control

Every book on quality control gives a slightly different viewpoint, or uses different terminology for
these terms.

In this book we will take “in-control” to mean that the behaviour of the process is stable over time.
Note though, that in-control does not mean the variable of interest meets the specifications required by
the customer, or set by the plant personnel. All that “in control” means is that there are no special
causes in the data, i.e. the process is stable. A special cause, or an assignable cause is an event that
occurs to move the process, or destabilize it. Process monitoring charts aim to detect such events. The
opposite of “special cause” operation is common cause operation, or stable process operation.
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Note: Our objective: quickly detect abnormal variation, and fix it by finding the root cause. In this
section we look at the “detection” problem. Diagnosis and process adjustment are two separate steps
that follow detection.

3.4 Shewhart charts

A Shewhart chart, named after Walter Shewhart from Bell Telephone and Western Electric, monitors
that a process variable remains on target and within given upper and lower limits. It is a monitoring
chart for location. It answers the question whether the variable’s location is stable over time. It does not
track anything else about the measurement, such as its standard deviation. Looking ahead: we show
later (page 119) that a pure Shewhart chart needs extra rules to help monitor the location of a variable
effectively.

The defining characteristics of a Shewhart chart are: a target, upper and lower control limits (UCL and
LCL). These action limits are defined so that no action is required as long as the variable plotted
remains within the limits. In other words a special cause is not likely present if the points remain
within the UCL and LCL.

3.4.1 Derivation using theoretical parameters

Define the variable of interest as x, and assume that we have samples of = available in sequence order.
No assumption is made regarding the distribution of . The average of n of these z-values is defined
as T, which from the Central limit theorem (page 44) we know will be more normally distributed with
unknown population mean p and unknown population variance o /n, where p and o refer to the
distribution that samples of 2 came from. The figure here shows the case for n = 5.

v v el 0T T T
Xy X Xy Xy X X Xy X
So by taking subgroups of size n values, we now have for each subgroup a newly calculated variable,
7 and we will define a shorthand symbol for its standard deviation: o = ¢//n. Writing a z-value for
T, and its associated confidence interval for . is now easy after studying the section on confidence
intervals (page 63):

Assuming we know o, which we usually do not in practice, we can invoke the normal distribution

and calculate the probability of finding a value of z between ¢,, = —3 to ¢, = +3:
—Cn < Toh < ey
ox
T—cpox < I < T+ceuox (3.1)
LCL < H < UCL
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The reason for ¢, = £3 is that the total area between that lower and upper bound spans 99.73% of the
area (in R: pnorm (+3) - pnorm(-3) gives 0.9973). So it is highly unlikely, a chance of 1 in 370, that
a data point, 7, calculated from a subgroup of n raw z-values, will lie outside these bounds.

The following illustration should help connect the concepts: the raw data’s distribution happens to
have a mean of 6 and standard deviation of 2, while it is clear the distribution of the subgroups of 5
samples (thicker line) is much narrower.

Shewhart chart: using theoretical (usually unknown) parameters
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3.4.2 Using estimated parameters instead

The derivation in equation (3.1) requires knowing the population variance, ¢, and assuming that our
target for « is p. The latter assumption is reasonable, but we will estimate a value for ¢ instead, using
the data.

Let’s take a look at phase 1, the step where we are building the monitoring chart’s limits from
K

historical data. Create a new variable T = T Z Tj, where K is the number of Z samples we have

k=1
available to build the monitoring chart, called the phase 1 data. Note that T is sometimes called the
grand mean. Alternatively, just set T to the desired target value for x or use a long portion of stable data

to estimate a suitable target
The next hurdle is 0. Define s;, to be the standard deviation of the n values in the £ subgroup. We do

. . . I S
not show it here, but for a subgroup of n samples, an unbiased estimator of ¢ is given by —, where
Qn

K

S=— Z sy is simply the average standard deviation calculated from K subgroups. Values for a,, are

K
k=1

looked up from a table, or using the formula below, and depend on the number of samples we use
within each subgroup.
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n 2 3 4 5 6 7 8 10 15
a, 07979 0.8862 09213 09400 0.9515 0.9594 0.9650 0.9727 0.9823

More generally, using the I'(...) function, for example gamma (. . .) in R or MATLAB, or
math.gamma (. ..) in Python, you can reproduce the above a,, values.
ATy

 Vn—1T(n/2-0.5)

Notice how the a,, values tend to 1.0 the larger the subgroup size, indicating we need less of a
correction to make the standard deviation less biased. Once we have this unbiased estimator for the
standard deviation from these K subgroups, we can write down suitable lower and upper control
limits for the Shewhart chart:

_=_o._8 _=.,42._8
LCL=F-3 -2 UCL=7+3- 2~ (3.2)

It is highly unlikely that all the data chosen to calculate the phase 1 limits actually lie within these

calculated LCL and UCLs. Those portions of data not from stable operation, which are outside the
limits, should not have been used to calculate these limits. Those unstable data bias the limits to be
wider than required.

Exclude these outlier data points and recompute the LCL and UCLs. Usually this process is repeated 2
to 3 times. It is wise to investigate the data being excluded to ensure they truly are from unstable
operation. If they are from stable operation, then they should not be excluded. These data may be
violating the assumption of independence (page 120). One may consider using wider limits, or use an
EWMA control chart (page 123).

Example

Bales of rubber are being produced, with every 10th bale automatically removed from the line for
testing. Measurements of colour intensity are made on 5 sides of that bale, using calibrated digital
cameras under controlled lighting conditions. The rubber compound is used for medical devices, so it
needs to have the correct colour, as measured on a scale from 0 to 255. The average of the 5 colour
measurements is to be plotted on a Shewhart chart. So we have a new data point appearing on the
monitoring chart after every 10th bale.

In the above example the raw data are the bale’s colour. There are n = 5 values in each subgroup.
Collect say K = 20 samples of good production bales considered to be from stable operation. No
special process events occurred while these bales were manufactured.

The data below represent the average of the n = 5 samples from each bale, there are X' = 20 of these
subgroups.

T = [245, 239,239, 241, 241, 241, 238, 238, 236, 248, 233, 236, 246, 253, 227, 231, 237, 228, 239, 240]

The overall average is T = 238.8 and S = 9.28. The raw data are available on this website®® and you
can verify the values of T and S were correctly calculated.

¢ Calculate the lower and upper control limits for this Shewhart chart.

e Were there any points in the phase 1 data (training phase) that exceeded these limits?

58 http://openmv.net/info/rubber-colour
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_ 3 9.28
- LCL=%—3- — 2388 3. — 2 __
any/n (0.94)(V/5)
_ = 2
_UCL=F4+3 -5 _ —o9388+3. 228

anvn (0.94)(V5)

The group with = 253 exceeds the calculated upper control limit.

= 225.6

= 252.0

and S = 9.68 and the new LCL = 224 and UCL = 252.

In source code:

Given information (but calculate yourself
# from http://openmv.net/info/rubber—colour)
xbar = c(245, 239, 239, 241, 241, 241, 238,
238, 236, 248, 233, 236, 246, 253,
227, 231, 237, 228, 239, 240)

# Number of measurements per subgroup
N.sub = 5

# Average of the 20 standard deviations
# of the 20 subgroups

S = 9.28
# xdb = x double bar = overall mean =
# mean of the means

xdb = mean (xbar)

num.an = sqrt(2) * gamma (N.sub/2)
den.an = sqgrt (N.sub-1) * gamma ((N.sub-1)/2)
an = num.an / den.an

LCL = xdb - (3 % S/(an % sgrt(N.sub)))
UCL = xdb + (3 = S/(an = sgrt(N.sub)))
pastel ('Control limits: [', round(LCL, 2),

'; ', round(UCL,2), '1")

pastel ('Number > UCL: ', sum(xbar > UCL))
pastel ('Number < LCL: ', sum(xbar < LCL))

# Exclude the one subgroup above the UCL.
# Do this by setting it to 'NA' (missing)
xbar [xbar > UCL] = NA

# Calculate the mean, removing missing
# values (ignore it).
xdb = mean (xbar, na.rm=TRUE)

# 'S'" will change also. If you download the
# raw data (link above), you can prove

# that the new 'S' will be:

S = 9.68

# The 'an' and 'N.sub' will not change.

LCL = xdb - (3 * S/(an * sqgrt(N.sub)))
UCL = xdb + (3 % S/(an = sqgrt(N.sub)))
pasteO('Control limits: [', round(LCL, O0),

'; ', round(UCL,0), ']")

R code

That Z point should be excluded and the limits recomputed. You can show the new = = 238.0

3.4. Shewhart charts
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3.4.3 Judging the chart’s performance

There are 2 ways to judge performance of a monitoring chart. In particular here we discuss the
Shewhart chart:

1. Error probability.

We define two types of errors, Type I and Type II, which are a function of the lower and upper control
limits (LCL and UCL).

You make a type I error when your sample is typical of normal operation, yet, it falls outside the UCL
or LCL limits. We showed in the theoretical derivation that the area covered by the upper and lower
control limits is 99.73%. The probability of making a type I error, usually denoted as « is then

100 — 99.73 = 0.27%.

Synonyms for a type I error: false alarm, false positive (used mainly for testing of diseases), producer’s
risk (used for acceptance sampling, because here as the producer you will be rejecting an acceptable
sample), false rejection rate, or alpha.

You make a type II error when your sample really is abnormal, but falls within the the UCL and LCL
limits and is therefore not detected. This error rate is denoted by $, and it is a function of the degree of
abnormality, which we derive next.

Synonyms for a type II error: false negative (used mainly for testing of diseases), consumer’s risk (used
for acceptance sampling, because your consumer will be receiving available product which is
defective), false acceptance rate, or beta.

To quantify the probability 5, recall that a Shewhart chart is for monitoring location, so we make an
assumption that the new, abnormal sample comes from a distribution which has shifted its location
from p to pu + Ao (e.g. A can be positive or negative). Now, what is the probability this new sample,
which come from the shifted distribution, will fall within the existing LCL and UCL? This figure
shows the probability is 5§ = (1 — the shaded area).

a = Pr(Z is in control, but lies outside the limits) = type I error rate

B = Pr (% is not in control, but lies inside the limits) = type II error rate

LCL UCL

Shift =Ac

— Original distribution
- = Shifted distribution

2 4 6 8 10

118 Chapter 3. Process Monitoring


https://www.youtube.com/watch?v=vHbjFQSOiNQ&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=62
https://www.youtube.com/watch?v=vHbjFQSOiNQ&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=62
https://www.youtube.com/watch?v=vHbjFQSOiNQ&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=62
https://www.youtube.com/watch?v=vHbjFQSOiNQ&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=62

Release 10d109

The table highlights that 3 is a function of the amount by which the process shifts = A, where A = 1
implies the process has shifted up by 1o. The table was calculated for n = 4 and used critical limits of
+30+. You can calculate your own values of 5 using this line of R code: beta <- pnorm(3 -
deltaxsgrt (n)) - pnorm(-3 - deltaxsqgrt(n))

A 0.25 0.50 0.75 1.00 1.50 2.00
Bwhenn=4 09936 09772 09332 0.8413 0.5000 0.1587

delta <- 1 R code
n <- 4
beta <- pnorm(+3 - deltassqrt(n)) -
pnorm (-3 — deltaxsqgrt(n))
pastel ('When delta=', delta, ' and n=', n,
' then beta = ', round(beta, 4))

The key point you should note from the table is that a Shewhart chart is not good (it is slow) at
detecting a change in the location (level) of a variable. This is surprising given the intention of the plot
is to monitor the variable’s location. Even a moderate shift of 0.75¢ units (A = 0.75) will only be
detected around 6.7% of the time (100 — 93.3%) when n = 4. We will discuss CUSUM charts (page 121)
and the Western Electric rules, next, as a way to overcome this issue.

It is straightforward to see how the type I, o, error rate can be adjusted - simply move the LCL and
UCL up and down, as required, to achieve your desired error rates. There is nothing wrong in
arbitrarily shifting these limits - more on this later (page 120) in the section on adjusting limits.

However what happens to the type II error rate as the LCL and UCL bounds are shifted away from the
target? Imagine the case where you want to have o — 0. As you make the UCL higher and higher, the
value for « drops, but the value for 8 will also increase, since the control limits have become wider!
You cannot simultaneously have low type I and type II error, or as said more colloquially, “there is
no free lunch”.

2. Using the average run length (ARL)

The average run length (ARL) is defined as the average number of sequential samples we expect

before seeing an out-of-bounds, or out-of-control signal. This is given by the inverse of o, as ARL = L.

Recall for the theoretical distribution we had oo = 0.0027, so the ARL = 370. Thus we expect a run of
370 samples before we get an out-of-control signal.

3.4.4 Extensions to the basic Shewhart chart to help monitor stability of the location

The Western Electric rules: we saw above how sluggish the Shewhart chart is in detecting a small shift
in the process mean, from p to it + Ao. The Western Electric rules are an attempt to more rapidly
detect a process shift, by raising an alarm when these improbable events occur:

1. Two out of 3 points lie beyond 20 on the same side of the centre line
2. Four out of 5 points lie beyond 1o on the same side of the centre line

3. Eight successive points lie on the same side of the center line
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However, an alternative chart, the CUSUM chart is more effective at detecting a shift in the mean.
Notice also that the theoretical ARL, 1/q, is reduced by using these rules in addition to the LCL and
UCL bounds.

Adding robustness: the phase I derivation of a monitoring chart is iterative. If you find a point that
violates the LCL and UCL limits, then the approach is to remove that point, and recompute the LCL
and UCL values. That is because the LCL and UCL limits would have been biased up or down by
these unusual points 7, points.

This iterative approach can be tiresome with data that has spikes, missing values, outliers, and
other problems typical of data pulled from a process database (historian). Robust monitoring
charts are procedures to calculate the limits so the LCL and UCL are resistant to the effect of
outliers. For example, a robust procedure might use the medians and MAD instead of the mean
and standard deviation. An examination of various robust procedures, especially that of the
interquartile range, is given in the paper by D. M. Rocke, Robust Control Charts®, Technometrics,
31(2), p 173 - 184, 1989.

Note: do not use robust methods to calculate the values plotted on the charts during phase 2, only
use robust methods to calculate the chart limits in phase 1!

Warning limits: it is common to see warning limits on a monitoring chart at £20, while the 3¢ limits
are called the action limits. Real-time computer systems usually use a colour scheme to distinguish
between the warning state and the action state. For example, the chart background changes from
green, to orange to red as the deviations from target become more severe.

Adjusting the limits: The 3¢ limits are not set in stone. Depending on the degree to which the source
data obey the assumptions, and the frequency with which spikes and outliers contaminate your data,
you may need to adjust your limits, usually wider, to avoid frequent false alarms. Nothing makes a
monitoring chart more useless to operators than frequent false alarms (”crying wolf®"”). However,
recall that there is no free lunch (page 118): you cannot simultaneously have low type I and type II error.

Changing the subgroup size: It is perhaps a counterintuitive result that increasing the subgroup size,
n, leads to a more sensitive detection system for shifts in the mean, because the control limits are
pulled in tighter. However, the larger n also means that it will take longer to see the detection signal as
the subgroup mean is averaged over more raw data points. So there is a trade-off between subgroup
size and the run length (time to detection of a signal).

3.4.5 Mistakes to avoid

1. Imagine you are monitoring an aspect of the final product’s quality, e.g. viscosity, and you have a
product specification that requires that viscosity to be within, say 40 to 60 cP. It is a mistake to place
those specification limits on the monitoring chart as a guide when to take action. It is also a mistake
to use the required specification limits instead of the LCL and UCL. The monitoring chart is to
detect abnormal variation in the process and gives a signal on when to take action, not to inspect for
quality specifications. You can certainly have another chart for that, but the process monitoring
chart’s limits are intended to monitor process stability, and these Shewhart stability limits are
calculated differently. Ideally the specification limits lie beyond the LCL and UCL action limits.

2. Shewhart chart limits were calculated with the assumption of independent subgroups (e.g.
subgroup ¢ has no effect on subgroup i + 1). For a process with mild autocorrelation, the act of
creating subgroups, with n samples in each group, removes most, if not all, of the relationship

% https://dx.doi.org/10.2307 /1268815
60 https: //en.wikipedia.org/wiki/The_Boy_Who_Cried_Wolf
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between subgroups. However processes with heavy autocorrelation (slow moving processes
sampled at a high rate, for example), will have LCL and UCL calculated from equation (3.2) that
will raise false alarms too frequently. In these cases you can widen the limits, or remove the
autocorrelation from the signal. More on this in the later section on exponentially weighted moving
average (EWMA) charts (page 123).

3. Using Shewhart charts on two or more highly correlated quality variables, usually on your final
product measurement, can increase your type II (consumer’s risk) dramatically. We will come back
to this very important topic in the section on latent variable models (page 397), where we will
counterintuitively prove that even having individual charts each within their respective limits can
result where it is outside the joint limits.

3.5 CUSUM charts

We showed earlier (page 119) that the Shewhart chart is not too sensitive to detecting shifts in the mean.
Depending on the subgroup size, n, we showed that it can take several consecutive samples before a
warning or action limit is triggered. The cumulative sum chart, or CUSUM chart, allows more rapid
detection of these shifts away from a target value, T'.

The following equation shows how this chart works.

SOZ(QT()—T)
Sl:(LE()*T)+(.T17T):S()+(CC17T)
Sy = (w0 =T)+ (x1 =T)+ (22 =T) = S1+ (22 = T) (3.3)

In general St =5Si-1+ (x: —T)
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Case 1, raw data: no shift in mean
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Case 2, a shift of 1.2 units (0.4 sigma) at t=150
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Values of S, are the values plotted on the y-axis of a CUSUM chart. Imagine during a period of good,
stable, in-control process operation around the target 7', then these S; numbers are just random errors,
with mean of zero. The long-term sum of S; is also zero, as the positive and negative errors keep
cancelling out.

So imagine a CUSUM chart where at some time point the process mean shifts up by A units, causing
future values of z; to be z; + A instead. Now the summation in the last equation of (3.3) has an extra A
term added at each step to S;. Every point will build up an accumulation of A, which shows up as a
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positive or negative slope in the CUSUM chart.

The CUSUM chart is extremely sensitive to small changes. The example chart is shown here for a
process where the mean is p = 20, and o = 3. A small shift of 0.4 x 3 = 1.2 units (i.e from 20 to 21.2)
occurs at ¢ = 150. This shift is almost imperceptible in the raw data (see the 3rd row in the figure).
However, the CUSUM chart rapidly picks up the shift by showing a consistent rising slope.

This figure also shows how the CUSUM chart is used with the 2 masks. Notice that there are no lower
and upper bounds for S;. A process that is on target will show a “wandering” value of S, moving up
and down. In fact, as the second row in the figure shows, a surprising amount of movement up and
down occurs even when the process is in control.

What is of interest however is a persistent change in slope in the CUSUM chart. The angle of the
superimposed V-mask is the control limit: the narrower the mouth of the mask, the more sensitive the
CUSUM chart is to deviations from the target. Both the type I and II error are set by the angle of the V
and the leading distance (the distance from the short vertical line to the apex of the V).

The process is considered in control as long as all points are within the arms of the V shape. The mask
in the second row of the plot shows “in control” behaviour, while the mask in the fourth row detects
the process mean has shifted, and an alarm should be raised.

Once the process has been investigated the CUSUM value, S; is often reset to zero; though other
resetting strategies exist. A tabular version of the CUSUM chart also exists which tends to be the
version used in software systems.

The purpose of this section is not to provide formulas for the V-mask or tabular CUSUM charts, only
to explain the CUSUM concept to put the next section on EWMA control charts in perspective.

3.6 EWMA charts

The two previous charts highlight 2 extremes of monitoring charts. On the one hand, a Shewhart chart
assumes each subgroup sample is independent (unrelated) to the next - implying there is no
“memory” in the chart. On the other hand, a CUSUM chart has an infinite memory, all the way back to
the time the chart was started or reset at t = 0 (see the equation in the prior section (page 121)).

As an introduction to the exponentially weighted moving average (EWMA) chart, consider first the
simple moving average (MA) chart. This chart is used just like a Shewhart chart, except the samples
that make up each subgroup are calculated using a moving window of width n. The case of n = 5 is

shown below.
X, For the case of
_X3<—> n= 5
X,
X,

[ o e o e P Y T B R R R R
XX XX X X X X

The MA chart plots values of 7;, calculated from groups of size n, using equal weight for each of the n
most recent raw data.

1 1
Ty = —Tp—1+ —Tg2+ ...+ —Trpn
n n n

The EWMA chart is similar to the MA chart, but uses different weights; heavier weights for more
recent observations, tailing off exponentially to very small weights further back in history. Let’s take a
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look at a derivation.

Define the process target as 7' and define z; as a new data measurement arriving now. We then try to
create an estimate of that incoming value, giving some weight, A, to the actual measured value, and the rest of the
weight, 1 — A, to the prior estimate.

Let us write the estimate of x; as 2, with the A mark above the z; to indicate that it is a prediction of
the actual measured z; value. The prior estimate is therefore written as &;_1.

So putting into equation form that “an estimate of that incoming value, is given by some weight, A and
the rest of the weight, 1 — A, to the prior estimate”:

B0 = Awt(1—N)dy

By = By A — Teo1) (3.4)
jjt—i—l = i‘t + A (5(7,5.;,.1 - j’f)
Tir1 = Amgpr + (1= N) 3y

To start the EWMA sequence we define the value for &y = T'and #; = Az; + T (1 — A). A worked
example is given further on in this section.

The last line in the equation group above shows that a 1-step-ahead prediction for z at time ¢t 4 1 is a
weighted sum of two components: the current measured value, z;, and secondly the predicted value,
24, with the weights summing up to 1. This gives a way to experimentally find a suitable X value from
historical data: adjust it up and down until the differences between &, and the actual measured
values of ;1 are small.

The next plot shows visually what happens as the weight of X is changed. In this example a shift of
A = 1o = 3 units occurs abruptly at ¢ = 150. This is of course not known in practice, but the purpose
here is to illustrate the effects of choosing A. Prior to that change the process mean is p1 = 20 and the
raw data has o = 3.

The first chart is the raw data and also a Shewhart chart with subgroup size of 1; the control limits are
at £3 time the standard deviation, so at 11.0 and 19.0 units. This control chart barely picks up the shift,
as was explained in a prior section (page 119).

The second, third and fourth charts are EWMA charts with different values of \; the line is the value
on the left-hand side of equation (3.4), in other words it is Z:41, the EWMA value at time ¢. We see that
as A decreases, the charts are smoother, since the averaging effect is greater: more and more weight is
given to the history, £, and less weight to the current data point, x;. See equation (3.4) to understand
that interpretation. Also note carefully how the control limits become narrower as the X decreases, as is
explained shortly below.

To see why &; represents historical data, you can recursively substitute and show that:

i=t
Tiqp1 = E wW;xT; = Woko + W1T1 + waxs + ...
i=0

where the weights are: ~ w; = A(1 — \)'™*

which emphasizes that the prediction is a just a weighted sum of the raw measurements, with weights
declining in time.

The final chart of the sequence of 5 charts is a CUSUM chart, which is the ideal chart (page 121) for
picking up such an abrupt shift in the level.
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Raw data (and also a Shewhart monitoring chart; limits at 3 sigma)

& - - -
AN !
O | T T | T
T 0 50 100 150 200
EWMA with A = 0.8
Lo |
(q\]
1'-9 i
0 50 100 150 200
EWMA with A = 0.4
< | . ) ] \\WI\VA\/AW
A !
% MMWW/WW
Al |
© | |
0 50 100 150 200
EWMA with A = 0.1
b | /M
AN |
© - T T T :
0 50 100 150 200
CUSUM
o
O -
A
(@]
‘(2 4
O -
0 50 100 150 200
Time steps

3.6. EWMA charts 125



Process Improvement Using Data

In the next figure, we show a comparison of the weights used in different monitoring charts studied so

far.

From the above discussion and the weights shown for the 4 different charts, it should be clear now
how an EWMA chart is a tradeoff between a Shewhart chart and a CUSUM chart. As A — 1, the
EWMA chart behaves more as a Shewhart chart, giving only weight to the most recent observation.
While as A — 0 the EWMA chart starts to have an infinite memory (like a CUSUM chart). There are 12
data points used in the example, so the CUSUM ‘weight’ is one twelfth or ~ 0.0833.

Shewhart weights CUSUM weights; each weight is 0.0833
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o o
< ~
o o
2 | S S o S| 3 p Pty
e T T T T T T T 1T e 1 T 1T T T T T T T T 1
t—-4 -2 t-4 -2 t
MA weights when N=5 EWMA weights when A = 0.6
«Q © _|
o [}

. !
< <
o o E

* g0 .

2 S — T T 2 to-o-g-0-pg-0- ... L ? I
e 1T T T T T T T 1 e 1 T T T T T T T T T 1
t—-4 -2 t t—-4 -2 t

The upper and lower control limits for the EWMA plot are plotted in the same way as the Shewhart
limits, but calculated differently:

LCL = % - K- OShewhart ﬁ UCL = E + K- OShewhart ﬁ (35)

where oghewnart represents the standard deviation as calculated for the Shewhart chart. K is usually a
value of 3, similar to the 3 standard deviations used in a Shewhart chart, but can of course be set to any
level that balances the type I (false alarms) and type II errors (not detecting a deviation which is
present already).

An interesting implementation can be to show both the Shewhart and EWMA plot on the same chart,
with both sets of limits. The EWMA value plotted is actually the one-step ahead prediction of the next
z-value, which can be informative for slow-moving processes.

The R code here shows one way of calculating the EWMA values for a vector of data. Once you have
pasted this function into R, use it as ewma (x, lambda=..., target=...).
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R code

ewma <- function(x, Iambda, target=x[17){
N <- length(x)
y <- numeric (N)

y[1l] = target

for (k in 2:N) {
error = x[k - 1] - y[k — 1]
y[lk] = ylk - 1] + lambda*error

}

return(y)

}

# Try using this function now:

X <- c(200, 210, 190, 190, 190, 190)
ewma (x, lambda = 0.3, target = 200)

Here is a worked example, starting with the assumption the process is at the target value of 7' = 200
units, and A = 0.3. We intentionally show what happens if the new value stays fixed at 190: you see
the value plotted gets only a weight of 0.3, while the 0.7 weight is for the prior historical value. Slowly
the value plotted catches up, but there is always a lag. The value plotted on the chart is from the last
equation in the set of (3.4).

Sample number Raw data z; Value plotted on chart: z;

0 NA 200

1 200 0.3 x 200 + 0.7 x 200 = 200

2 210 0.3 x 210 4 0.7 x 200 = 203

3 190 0.3 x 190 + 0.7 x 203 = 199.1
4 190 0.3 x 190 + 0.7 x 199.1 = 196.4
5 190 0.3 x 190 + 0.7 x 196.4 = 194.5
6 190 0.3 x 190 + 0.7 x 194.5 = 193.1

3.7 Other types of monitoring charts

You may encounter other charts in practice:

® The S chart is for monitoring the subgroup’s standard deviation. Take the group of n samples and
show their standard deviation on a Shewhart-type chart. The limits for the chart are calculated
using similar correction factors as were used in the derivation for the T Shewhart chart. This chart
hasa LCL > 0.

* The R chart was a precursor for the S chart, where the R stands for range, the subgroup’s maximum
minus minimum. It was used when charting was done manually, as standard deviations were
tedious to calculate by hand.

e The np chart and p chart are used when monitoring the proportion of defective items using a
pass/fail criterion. In the former case the sample size taken is constant, while in the latter the
proportion of defective items is monitored. These charts are derived using the binomial distribution.

* The exponentially weight moving variance (EWMYV) chart is an excellent chart for monitoring for an
increase in product variability. Like the A from an EWMA chart, the EWMYV also has a sliding
parameter that can balance current information and historical information to trade-off sensitivity.
More information is available in the paper by J.F. MacGregor, and T.J. Harris, “The Exponentially
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Weighted Moving Variance®”, Journal of Quality Technology, 25, p 106-118, 1993.

3.8 Process capability

Note: This section is not about a particular monitoring chart, but is relevant to the topic of process
monitoring.

3.8.1 Centered processes

Purchasers of your product may request a process capability ratio (PCR) for each of the quality
attributes of your product. For example, your plastic product is characterized by its Mooney viscosity
and melting point. A PCR value can be calculated for either property, using the definition below:

_ Upper specification limit — Lower specification limit  USL — LSL

PCR
60 60

(3.6)

Since the population standard deviation, o, is not known, an estimate of it is used. Note that the lower
specification limit (LSL) and upper specification limit (USL) are not the same as the lower control limit
(LCL) and upper control limit (UCL) as were calculated for the Shewhart chart. The LSL and USL are
the tolerance limits required by your customers, or set from your internal specifications.

Interpretation of the PCR:
* assumes the property of interest follows a normal distribution

* assumes the process is centered (i.e. your long term mean is halfway between the upper and lower
specification limits)

¢ assumes the PCR value was calculated when the process was stable

The PCR is often called the process width. Let’s see why by taking a look at a process with PCR=0.5
and then PCR=2.0. In the first case USL — LSL = 3¢. Since the interpretation of PCR assumes a
centered process, we can draw a diagram as shown below:

LSL USL

20 40 60 80 100 120 140

The diagram is from a process with mean of 80 and where LSL=65 and USL=95. These specification are
fixed, set by our production guidelines. If the process variation is ¢ = 10, then this implies that

61 https://learnche.org/literature/item /178 /the-exponentially-weighted-moving-variance
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PCR=0.5. Assuming further that the our production is centered at the mean of 80, we can calculate how
much defective product is produced in the shaded region of the plot. Assuming a normal distribution:

o for LSL = (65 — 80)/10 = —1.5
e 2 for USL=(95—80)/10=1.5

¢ Shaded area probability = pnorm (-1.5) + (l-pnorm(1.5)) =13.4% of production is out of the
specification limits.

Contrast this to the case where PCR = 2.0 for the same system. To achieve that level of process
capability, using the same upper and lower specifications we have to reduce the standard deviation by a
factor of 4, down to o = 2.5. The figure below illustrates that almost no off-specification product is
produced for a centered process at PCR = 2.0. There is a width of 12¢ units from the LSL to the USL,
giving the process location (mean) ample room to drift left or right without creating additional
off-specification product.

LSL USL

20 40 60 80 100 120 140

Note: You will probably come across the terminology C,, especially when dealing with 6 sigma
programs. This is the same as PCR for a centered process.

3.8.2 Uncentered processes

Processes are not very often centered between their upper and lower specification limits. So a measure
of process capability for an uncentered processes is defined:

PCRy = Cpc = min Upper specification limit — 5; T — Lower specification limit 3.7)
3o 30

The T term would be the process target from a Shewhart chart, or simply the actual average operating

point. Notice that Cpy is a one-sided ratio, only the side closest to the specification is reported. So even

an excellent process with Cp, = 2.0 that is running off-center will have a lower Cpy.

It is the Cpi value that is requested by your customer. Values of 1.3 are usually a minimum
requirement, while 1.67 and higher are requested for health and safety-critical applications. A value of
Cpk > 2.0 is termed a six-sigma process, because the distance from the current operating point, T, to
the closest specification is at least 6 units.

You can calculate that a shift of 1.5¢ from process center will introduce only 3.4 defects per million.
This shift would reduce your Cpy from 2.0 to 1.5.
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Note: It must be emphasized that Cp, and C, numbers are only useful for a process which is stable.
Furthermore the assumption of normally distributed samples is also required to interpret the Cp
value.

3.9 The industrial practice of process monitoring

This preceding section of the book is only intended to give an overview of the concepts of process
monitoring. As you move into an industrial environment you will find there are many such systems
already in place. Higher levels of management track statistics from a different point of view, often
summarizing data from an entire plant, geographic region, or country. The techniques learned in this
book, while focusing mainly on unit operations, are equally applicable though to data from a plant,
region, or country.

You may come across systems called dashboards, which are often part of enterprise resource planning
(ERP) systems. These dashboards are supposed to monitor the pulse of a company and are tracked like
any other monitoring chart discussed above. Another area is called business intelligence (BI) systems.
These typically track sales and other financial information.

Yet another acronym is the KPI, key performance indicator, which is a summary variable, such as
profit per hour, or energy cost per unit of production. These are often monitored and acted on by site
managers on a daily or weekly basis. Sites in a global company with the lowest KPIs receive the
greatest scrutiny.

But at the unit operation and plant level, you will likely find the hardest part of getting a monitoring
chart implemented is the part where you need access to the data. Getting data out of most database
systems is not easy, though it has improved quite a bit in the last few years.

It is critical that your monitoring chart display the quantity as close to real-time as possible. It is almost
as if the monetary value of the information in a monitoring chart decays exponentially from the time
an event occurs. It is hard to diagnose and correct a problem detected yesterday, and harder still if the
problem occurred last week or month.

You will also realize that good operator training to interpret and act on the monitoring chart is
time-consuming; operators are often cycled between different units or plants, so frequent re-training is
required. Concepts from the data visualization (page 1) section are helpful to minimize training effort -
make sure the online plots contain the right level of information, without clutter, so they can be acted
on accurately.

Another side effect of large quantities of data are that you will have to work with IT groups to
manipulate large chunks of data on dedicated networks, separate from the rest of the plant. The last
thing you want to be responsible for is clogging the company network with your traffic. Most
industries now have a “production” network running in parallel to the “corporate” network. The
production network carries real-time data, images from cameras and so forth, while the company
network carries office email and web traffic.
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3.9.1 Approach to implement a monitoring chart in an industrial setting

Here is some general guidance; feel free to adjust the steps as required for your unique situation.

1.

10.

11.

12.

13.

14.

Identify the variable(s) to monitor. Make sure each variable shows different, uncorrelated
phenomena to avoid redundancy. If unsure which variables to select, use a multivariate monitoring
system (page 397).

Retrieve historical data from your computer systems, or lab data, or paper records.

Import the data and just plot it. Do you see any time trends, outliers, spikes, missing data gaps?
Investigate these (to learn more about your process), but then remove them to create the phase 1
data set.

. Locate any regions of data which are from generally stable operation. Remove spikes and outliers

that will bias your control limits calculations. In other words, find regions of common-cause
operation.

Split your phase 1 data into say a 60% and 40% split. Set aside 40% of the cleaned portion to use as
phase 1 testing data later on. Keep the data from outliers, spikes and unstable process operation
aside as another testing data set (to ensure that these problems are actually detectable).

Using the cleaned 60% portion, estimate limits that you would expect to contain this stable region of
operation just by looking at the plots.

On the 60% portion, calculate preliminary control limits (UCL, LCL), using the formulas shown in
this section. They should agree with limits in the previous step.

How does your chart work? Test your chart on the 40% cleaned portion. These testing data should
not raise many alarms. Any alarms raised will be type I errors, so you can quantify your type I error
rate from the fraction of false alarms raised.

. Test your chart on the unusual data you found earlier. You can quantify the type II error by

counting the fraction of this bad data that went undetected by your chart.

Adjust the limits and monitoring chart parameters (e.g. \) if necessary, to achieve the required type
I and type II balance that is acceptable to your operation staff. You may even have to resort to using
a different chart, or monitoring based on a different variable.

Test the chart on your desktop computer for a couple of days. When you detect an unusual event,
go and check with the process operators and verify the event. Would they have reacted to it, had
they known about it? Or, would this have been a false alarm? You may need to refine your limits, or
the value you are plotting again.

Remember that this form of charting is not an expert system - it will not diagnose problems: you
have to use your engineering knowledge by looking at patterns in the chart, and use knowledge of
other process events.

Demonstrate the system to your colleagues and manager. But show them economic estimates of the
value of early detection. They are usually not interested in the plots alone, so convert the statistics
into monetary values. For example, dollars saved if we had detected that problem in real-time,
rather than waiting till later.

Installation and operator training will take time. This assumes that you have real-time data
acquisition systems and real-time processing systems in place - most companies do. You will have
to work with your company’s IT staff to get this implemented.
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15. Listen to your operators for what they want to see. Use principles of good data visualization (page 1)
to reduce unnecessary information. Make your plots interactive - if you click on an unusual point it
should “drill-down” and give you more details and historical context.

16. Future monitoring charts are easier to get going, once the first system is in place.

3.10 Industrial case study

ArcelorMittal’s steel mill in Hamilton, Ontario, (formerly called Dofasco) has used multivariate
process monitoring tools in many areas of their plant for decades now. One of their most successful
applications is that applied to their casting operation. In this section we only focus on the application;
the sort of multivariate calculations used by this system are discussed later on (page 315).

The computer screenshot shows the monitoring system, called Caster SOS (Stable Operation
Supervisor), which is followed by the operators. There are several charts on the screen: two charts,
called “Stability Index 1” and “Stability Index 2, are one-sided monitoring charts. Notice the warning
limits and the action limits. In the middle is a two-sided chart. A wealth of information is presented on
the screen - their design was heavily influenced and iterated on several times, working with the
operators. The screen shot is used with permission of Dr. John MacGregor.

Caster S.0.8. State: Startup
Trend Menu
G D 02

EADET Ca ngth 147 SEN Depth -0 0 : a ap

Bl Stbilty index 1
1

8/11/2003 4:08:00 PM 5.00 Min(s) /11,2003 4:13:00 PM 8/11/2003 4:08:00 PM 5.00 Min(s)

EiFU 92 SFI,_I 96 -_'lFI_I 96 iFLJ 96 EFU 103 TFU 92

Legend
Selected

Active

Deselected

East Broadface Center Broacdface West Broadface

The economics of monitoring charts cannot be overstated. The ArcelorMittal example above was
introduced around 1997. The calculations required by this system are complex - however the computer
systems performs them in near real-time, allowing the operators to take corrective action within a few
seconds. The data show a significant reduction in breakouts since 1997 (used with permission of Dr. John
MacGregor).
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The economic savings and increased productivity is in the millions of dollars per year, as each
breakout costs around $200,000 to $500,000 due to process shutdowns and/or equipment damage.

3.11 Summary

Montgomery and Runger list 5 reasons why monitoring charts are widely used. After this section of
the book you should understand the following about the charts and process monitoring:

1. These tools are proven to improve productivity (i.e. to reduce scrap and rework, as described
above), and to increase process throughput.

2. They detect defective production, consistent with the concept of “doing it right the first time”, a
mantra that you will increasingly hear in the manufacturing workplace.

3. A monitoring chart with good limits will prevent over-control of the process. Operators are trained
not to make process adjustments unless there is a clear warning or alarm from the chart.

4. The patterns generated by the plots often help determine what went wrong, providing some
diagnostic value to the operators. We will see a more formal tool for process diagnosis though in the
latent variable section (page 315).

5. Monitoring charts are required to judge if a process is stable over time. A stable process allows us to
calculate our process capability, which is an important metric for your customers.

3.12 Exercises

Question 1

Is it fair to say that a monitoring chart is like an online version of a confidence interval (page 63)?
Explain your answer.
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Question 2

Use the batch yields data®® and construct a monitoring chart using the 300 yield values. Use a

subgroup of size 5. Report your target value, lower control limit and upper control limit, showing the

calculations you made. I recommend that you write your code so that you can reuse it for other

questions.

Solution

Please see the code below. The Shewhart chart’s parameters are as below, with plots generated from

the R code.
¢ Target =804
e Lower control limit at 3 standard deviations = 71.1

e Upper control limit at 3 standard deviations = 89.6

Shewhart chart

wn _]
(e}

90
1

Subgroup means
80
|

70

65

Try it yourself:

30 40 50 60

Index

data_file <- Thttp://openmv.net/file batchfyﬁefgg?csv'
batch <- read.csv(data_file)

# make sure we have the expected data
summary (batch)

attach (batch)

# To get a feel for th
#

looks pretty good; no unusual outliers
plot (Yield)

N = length(Yield)

N.sub = 5 # subgroup size

subgroup <- matrix(Yield, N.sub, N/N.sub)
N.groups <- ncol (subgroup)

dim (subgroup) # 5 by 60 matrix

62 http://openmv.net/info/batch-yields

(continues on next page)
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subgroup.sd <- apply (subgroup, 2, sd)
subgroup.xbar <- apply (subgroup, 2, mean)

# Take a look at what these numbers mean
plot (subgroup.xbar,

type="b",

ylab="Subgroup average")
plot (subgroup.sd,

type="b",

ylab="Subgroup spread")

control

showing

# the calculations you made.

target <- mean (subgroup.xbar)
Sbar <- mean (subgroup.sd)

# a_n value 1s from the table when
# subgroup size = 5
an <- 0.94

an.num <- sqgrt (2)xgamma (N.sub/2)
an.den <- sqgrt (N.sub-1)+gamma (N.sub/2-0.5)
an <- an.num/an.den
sigma.estimate <- Sbar / an
LCL <- target - 3 % sigma.estimate/sqgrt (N.sub)
UCL <- target + 3 * sigma.estimate/sqgrt (N.sub)
c(LCL, target, UCL)
plot (subgroup.xbar,
ylim=c(LCL-5, UCL+5),
ylab="Subgroup means",
main="Shewhart chart")
abline (h=target, col="green")
abline (h=UCL, col="red")

abline (h=LCL, col="red")

(continued from previous page)

Question 3

The boards data®® on the website are from a line which cuts spruce, pine and fir (SPF) to produce

general quality lumber that you could purchase at Rona, Home Depot, etc. The price that a saw mill

receives for its lumber is strongly dependent on how accurate the cut is made. Use the data for the 2 by

6 boards (each row is one board) and develop a monitoring system using these steps.

a) Plot all the data.

b) Now assume that boards 1 to 500 are the phase 1 data; identify any boards in this subset that appear

to be unusual (where the board thickness is not consistent with most of the other operation)

¢) Remove those unusual boards from the phase 1 data. Calculate the Shewhart monitoring limits and

show the phase 1 data with these limits. Note: choose a subgroup size of 7 boards.

d) Test the Shewhart chart on boards 501 to 2000, the phase 2 data. Show the plot and calculate the
type I error rate (o) from the phase 2 data; assuming, of course, that all the phase 2 data are from

in-control operation.

e) Calculate the ARL and look at the chart to see if the number looks about right. Use the time
information in the raw data and your ARL value to calculate how many minutes between a false

alarm. Will the operators be happy with this?

63 http://openmv.net/info/six-point-board-thickness
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f) Describe how you might calculate the consumer’s risk (5).

g) How would you monitor if the saws are slowly going out of alignment?

Question 4

Your process with Cpk of 2.0 experiences a drift of 1.50 away from the current process operating point
towards the closest specification limit. What is the new Cpk value; how many defects per million
items did you have before the drift? And after the drift?

Solution

The new Cpk value is 1.5. The number of defects per million items at Cpk = 2.0 is 0.00098 (essentially
no defects), while at Cpk = 1.5 it is 3.4 defects per million items. You only have to consider one-side of
the distribution, since Cpk is by definition for an uncentered process, and deals with the side closest to
the specification limits.

R code

Cpk <= 1.5
n.sigma.distance <- 3 % Cpk
dpm <- pnorm(-n.sigma.distance,
mean=0,
sd=1) * 1E6

pastel('Defects per million = ', round(dpm, 3))

Question 5

Which type of monitoring chart would be appropriate to detect unusual spikes (outliers) in your
production process?

Solution

A Shewhart chart has no memory, and is suited to detecting unusual spikes in your production.
CUSUM and EWMA charts have memory, and while they would pick up this spike, they would also
create a long duration of false alarms after that. So those charts are much less appropriate.

Question 6

A tank uses small air bubbles to keep solid particles in suspension. If too much air is blown into the
tank, then excessive foaming and loss of valuable solid product occurs; if too little air is blown into the
tank the particles sink and drop out of suspension.
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. Which monitoring chart would you use to ensure the airflow is always near target?

. Use the aeration rate dataset®* from the website and plot the raw data (total litres of air added ina 1

minute period). Are you able to detect any problems?

Construct the chart you described in part 1, and show it’s performance on all the data. Make any
necessary assumptions to construct the chart.

. At what point in time are you able to detect the problem, using this chart?

. Construct a Shewhart chart, choosing appropriate data for phase 1, and calculate the Shewhart

limits. Then use the entire dataset as if it were phase 2 data.
¢ Show this phase 2 Shewhart chart.

¢ Compare the Shewhart chart’s performance to the chart in part 3 of this question.

Solution

Solution based on work by Ryan and Stuart (2011 class)

1.

A CUSUM chart would be a suitable chart to monitor that the airflow is near target. While a
Shewhart chart is also intended to monitor the location of a variable, it has a much larger run length
for detecting small shifts. An EWMA chart with small A (long memory) would approximate a
CUSUM chart, and so would also be suitable

. The aeration rate dataset is depicted below:

64 http://openmv.net/info/aeration-rate
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It is very difficult to assess problems from the raw data plot. There might be a slight upward shift
around 300 and 500 minutes.

3. Assumptions for the CUSUM chart:
¢ We will plot the CUSUM chart on raw data, though you could use subgroups if you wanted to.

¢ The target value can be the mean (24.17) of all the data, or more robustly, use the median (24.1),
especially if we expect problems with the raw data (true of almost every real data set).

4. The CUSUM chart, using the median as target value showed a problem starting to occur around
t = 300. So we recalculated the median, using only data from 0 to ¢ = 200, to avoid biasing the
target value. Using this median instead, 23.95, we get the following CUSUM chart:
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5. The revised CUSUM chart suggests that the error occurs around 275 min, as evidenced by the steep
positive slope thereafter. It should be noted that the CUSUM chart begins to bear a positive slope
around 200 min, but this initial increase in the cumulative error would likely not be diagnosable (i.e.
using a V-mask).

# Code by Ryan and Stuart (2011 class)

CUSUM <- function(x, target) {

N <- length(x)

S <- numeric (N)

S[1] = x[1] - target
for (t in 2:N){

S[t] = S[t-1] + (x[t] - target)
}
(continues on next page)
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(continued from previous page)

return (S)

}

# Import data and remove missing values (NA)
aeration.data <- read.csv('http://openmv.net/file/aeration-rate.csv')
aeration <- na.omit (aeration.dataSAeration)

# Plot raw data
bitmap ('aeration-rate-raw-data.png', type="png256",
width=10, height=4, res=300, pointsize=14)
plot (aeration, type="1", xlab="Time (min)", ylab="Aeration rate (L/min)")
grid()
dev.off ()

# Plot CUSUM Chart
target <- median (aeration[1:2001])
bitmap ('aeration-CUSUM.png', type="png256",
width=10, height=4, res=300, pointsize=14)
plot (CUSUM (aeration, target), type="1", xlab="Time (min)",
ylab="CUSUM cumulative deviations")
grid()
dev.off ()

# Plot the Shewhart chart: see code from the other question to
# calculate the control limits

LCL <— 22.1

UCL <- 25.8

N <- 5

subgroups <- matrix(aeration, N, length(aeration) /N)

x.mean <- numeric (length (aeration) /N)

x.sd <- numeric (length (aeration) /N)

# Calculate mean and sd of subgroups (see R-tutorial)
x.mean <- apply(subgroups, 2, mean)

x.sd <- apply (subgroups, 2, sd)

ylim <- range(x.mean) + c(-5, +5)

xdb <- target # use the same CUSUM target !

bitmap ('aeration-Shewhart-chart.png',
type="png256", width=10, height=4, res=300, pointsize=14)
par (mar=c(4.2, 4.2, 0.5, 0.5))
par (cex.lab=1.3, cex.main=1.5, cex.sub=1.5, cex.axis=1.5)
plot (seq(l, length (x.mean) *N, N), x.mean, type="b", pch=".", cex=5, main="",
ylab="Phase II subgroups", xlab="Time order", ylim=ylim)
abline (h=UCL, col="red")
abline (h=LCL, col="red")
abline (h=xdb, col="green")
lines(c (275, 275), ylim, col="blue")
text (280, 29, "CUSUM detected problem at t=275",adj = c(0,0))

dev.off ()

6. Using the iterative Shewhart code from the previous question, we used
* Phase I was taken far enough away from the suspected error: 0 - 200 min

* Subgroup sizeofn =5

e 7=239

e §=1.28

e a, = 0.940

. LCL=23.9—3-ﬁ/5=22.1
. UCL=23.9+3-%5=25.8
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The Shewhart chart applied to the entire dataset is shown below. In contrast to the CUSUM chart, the
Shewhart chart is unable to detect the problem in the aeration rate. Unlike the CUSUM chart, which
has infinite memory, the Shewhart chart has no memory and cannot adequately assess the location of
the monitored variable in relation to its specified target. Instead, the Shewhart chart merely monitors
aeration rate with respect to the control limits for the process. Since the aeration rate does not exceed
the control limits for the process (i.e. process remains in control), the Shewhart chart does not detect
any abnormalities.
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If you used the Western Electric rules, in addition to the Shewhart chart limits, you would have picked
up a consecutive sequence of 8 points on one side of the target around ¢ = 350.

Question 7

Do you think a Shewhart chart would be suitable for monitoring the closing price of a stock on the
stock market? Please explain your answer if you agree, or describe an alternative if you disagree.

Solution

No, a Shewhart chart is not suitable for monitoring stock prices. Stock prices are volatile variables (not
stable), so there is no sense in monitoring their location. Hopefully the stock is moving up, which it
should on average, but the point is that stock prices are not stable. Nor are stock prices independent
day-to-day.

So what aspect of a stock price is stable? The difference between the opening and closing price of a
stock is remarkably stationary. Monitoring the day-to-day change in a stock price would work. Since
you aren’t expected to know this fact, any reasonable answer that attempts to monitor a stable
substitute for the price will be accepted. E.g. another alternative is to remove the linear up or down
trend from a stock price and monitor the residuals.

There are many alternatives; if this sort of thing interests you, you might find the area called technical
analysis® worth investigating. An EWMA chart is widely used in this sort of analysis.

65 https: //en.wikipedia.org/wiki/Technical_analysis
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Question 8

Describe how a monitoring chart could be used to prevent over-control of a batch-to-batch process. (A
batch-to-batch process is one where a batch of materials is processed, followed by another batch, and
SO on).

Solution

Over-control of any process takes place when too much corrective action is applied. Using the
language of feedback control, your gain is the right sign, but the magnitude is too large. Batch
processes are often subject to this phenomenon: e.g. the operator reduces the set-point temperature for
the next batch, because the current batch produced product with a viscosity that was too high. But
then the next batch has a viscosity that is too low, so the operator increases the temperature set-point
for the following batch. This constant switching is known as over-control (the operator is the feedback
controller and his/her gain is too high, i.e. they are over-reacting).

A monitoring chart such as a Shewhart chart would help the operator: if the previous batch was
within the limits, then s/he should not take any corrective action. Only take action when the viscosity
value is outside the limits. An EWMA chart would additionally provide a one-step ahead prediction,
which is an advantage.

Question 9

You need to construct a Shewhart chart. You go to your company’s database and extract data from 10
periods of time lasting 6 hours each. Each time period is taken approximately 1 month apart so that
you get a representative data set that covers roughly 1 year of process operation. You choose these
time periods so that you are confident each one was from in control operation. Putting these 10
periods of data together, you get one long vector that now represents your phase 1 data.

¢ There are 8900 samples of data in this phase 1 data vector.
* You form subgroups: there are 4 samples per subgroup and 2225 subgroups.

* You calculate the mean within each subgroup (i.e. 2225 means). The mean of those 2225 means is
714.

* The standard deviation within each subgroup is calculated; the mean of those 2225 standard
deviations is 98.

1. Give an unbiased estimate of the process standard deviation?

2. Calculate lower and upper control limits for operation at £3 of these standard deviations from
target. These are called the action limits.

3. Operators like warning limits on their charts, so they don’t have to wait until an action limit alarm
occurs. Discussions with the operators indicate that lines at 590 and 820 might be good warning
limits. What percentage of in control operation will lie inside the proposed warning limit region?

Short answer: Unbiased estimate of the process standard deviation = 106.4; UCL = 874; LCL = 554.
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Question 10

If an exponentially weighted moving average (EWMA) chart can be made to approximate either a
CUSUM or a Shewhart chart by adjusting the value of A, what is an advantage of the EWMA chart
over the other two? Describe a specific situation where you can benefit from this.

Question 11

The most recent estimate of the process capability ratio for a key quality variable was 1.30, and the
average quality value was 64.0. Your process operates closer to the lower specification limit of 56.0.
The upper specification limit is 93.0.

What are the two parameters of the system you could adjust, and by how much, to achieve a capability
ratio of 1.67, required by recent safety regulations. Assume you can adjust these parameters
independently.

Question 12

A bagging system fills bags with a target weight of 37.4 grams and the lower specification limit is 35.0
grams. Assume the bagging system fills the bags with a standard deviation of 0.8 grams:

1. What is the current Cpk of the process?

2. To what target weight would you have to set the bagging system to obtain Cpk=1.3?

3. How can you adjust the Cpk to 1.3 without adjusting the target weight (i.e. keep the target weight
at 37.4 grams)?

Short answer: Current Cpk = 1.0

Question 13

Plastic sheets are manufactured on your blown film line. The Cp value is 1.7. You sell the plastic sheets
to your customers with specification of 2 mm =+ 0.4 mm.

1. List three important assumptions you must make to interpret the Cp value.

2. What is the theoretical process standard deviation, o?

3. What would be the Shewhart chart limits for this system using subgroups of size n = 4?

4. Illustrate your answer from part 2 and 3 of this question on a diagram of the normal distribution.
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Question 14

The following charts show the weight of feed entering your reactor. The variation in product quality
leaving the reactor was unacceptably high during this period of time.

Raw data: weight of feed entering
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1. What can your group of process engineers learn about the problem, using the time-series plot (100
consecutive measurements, taken 1 minute apart).

2. Why is this variability not seen in the Shewhart chart?

3. Using concepts described elsewhere in this book, why might this sort of input to the reactor have an
effect on the quality of the product leaving the reactor?

Question 15

You will come across these terms in the workplace. Investigate one of these topics, using the Wikipedia
link below to kick-start your research. Write a paragraph that (a) describes what your topic is and (b)
how it can be used when you start working in a company after you graduate, or how you can use it
now if you are currently working.

* Lean manufacturing®
* Six sigma® and the DMAIC cycle. See the list of companies® that use six sigma tools.
 Kaizen® (a component of The Toyota Way”?)

* Genchi Genbutsu’! (also a component of The Toyota Way”?)

66 https://en.wikipedia.org/wiki/Lean_manufacturing

67 https: //en.wikipedia.org/wiki/Six_Sigma

68 https://en.wikipedia.org/wiki/List_of_Six_Sigma_companies
69 https: //en.wikipedia.org/wiki/Kaizen

70 https://en.wikipedia.org/wiki/The_Toyota_Way

71 https://en.wikipedia.org/wiki/Genchi_Genbutsu

72 https: //en.wikipedia.org /wiki/The_Toyota_Way
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In early 2010 Toyota experienced some of its worst press coverage on this very topic. Here is an
article” in case you missed it.

Question 16

The Kappa number is a widely used measurement in the pulp and paper industry. It can be measured
on-line, and indicates the severity of chemical treatment that must be applied to a wood pulp to obtain
a given level of whiteness (i.e. the pulp’s bleachability). Data on the website’* contain the Kappa
values from a pulp mill. Use the first 2000 data points to construct a Shewhart monitoring chart for the
Kappa number. You may use any subgroup size you like. Then use the remaining data as your phase 2
(testing) data. Does the chart perform as expected?

Short answer: The intention of this question is for you to experience the process of iteratively
calculating limits from phase 1 data and applying them to phase 2 data.

Question 17

In this section we showed how one can monitor any variable in a process. Modern instrumentation
though capture a wider variety of data. It is common to measure point values, e.g. temperature,
pressure, concentration and other hard-to-measure values. But it is increasingly common to measure
spectral data. These spectral data are a vector of numbers instead of a single number.

Below is an example from a pharmaceutical process: a complete spectrum can be acquired many times
per minute, and it gives a complete chemical fingerprint or signature of the system. There are 460
spectra in figure below; they could have come, for example, from a process where they are measured 5
seconds apart. It is common to find fibre optic probes embedded into pipelines and reactors to monitor
the progress of a reaction or mixing.

Write a few bullet points how you might monitor a process where a spectrum (a vector) is your data
source, and not a “traditional” single point measurement, like a temperature value.

7

Absorbance

600 800 1000 1200 1400 1600 1800 2000
Wavelength (nm)

73 https: //www.reuters.com/article /us-toyota-us-manufacturers-analysis/ toyota-stumbles-but-its-kaizen-cult-endures-idUSTRE6161RV2010020
74 http://openmv.net/info/kappa-number
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Question 18

The carbon dioxide measurement is available from a gas-fired furnace”. These data are from phase 1

operation.

1. Calculate the Shewhart chart upper and lower control limits that you would use during phase 2

with a subgroup size of n = 6.
2. Is this a useful monitoring chart? What is going in this data?

3. How can you fix the problem?

Solution
Solution based on work by Ryan and Stuart (2011 class)

First a plot of the raw data will be useful:

o | . -
o
©
o _|
s w0
© ~
88 Fo :
I I I I I I I
0 50 100 150 200 250 300

Sequence order

1. Assuming that the CO, data set is from phase 1 operation, the control limits were calculated as

follows:

¢ Assume subgroups are independent

[ ]

]l

I
x|
M=

Tr = 53.5
k=1
N K
e S=4% > s =110
k=1
* a, =0.952

e ILCL=535—-3- 0;5% = 52.08

e UCL=53.5+3- 0_;5;% = 54.92

2. The Shewhart chart using a subgroup of size 6 is not a useful monitoring chart. There are too many

false alarms, which will cause the operators to just ignore the chart. The problem is that the first

assumption of independence is not correct and has a detrimental effect, as shown in a previous
question (page 102).

75 http://openmv.net/info/gas-furnace
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3. One approach to fixing the problem is to subsample the data, i.e. only use every k" data point as
the raw data, e.g. k¥ = 10, and then form subgroups from that sampled data.

Another is to use a larger subgroup size. Use the autocorrelation function’®, and the corresponding
acf (...) function in R to verify the degree of relationship. Using this function we can see the raw
data are unrelated after the 17th lag, so we could use subgroups of that size. However, even then we
see the Shewhart chart showing frequent violation, though fewer than before.

Yet another alternative is to use an EWMA chart, which takes the autocorrelation into account.
However, the EWMA chart limits are found from the assumption that the subgroup means (or raw
data, if subgroup size is 1), are independent.

So we are finally left with the conclusion that perhaps there data really are not from in control
operation, or, if they are, we must manually adjust the limits to be wider.

file <- Thttp://openmv.net/file gasffurnaco.£%$pde

data <- read.csv(file)
CO2 <- datasco2

N.raw <- length (C0O2)
N.sub <- 6

nge " 'N.sub

g 20, etc
At N.sub <-

Ch

di

Sutocc lation
autocorrelatiol

W oW W

Plot all the data

par (mar=c(4.2, 4.2, 0.5, 0.5)
par (cex.lab=1.3, cex.main=1.5,

#

cex.sub=1.5, cex.axis=1.5)
plot (CO2, type="p", pch=".", cex=2,
main="", ylab="CO02: raw data",

xlab="Sequence order")

> raw data.

rows by

ate the mean and standa

# within each subgroup (columns of the matrix)

subgroups <- matrix (C0O2, N.sub, N.raw/N.sub)
subgroups.S <- apply (subgroups, 2, sd)
subgroups.xbar <- apply (subgroups, 2, mean)
ylim <- range (subgroups.xbar) + c(-3, +3)

(continues on next page)

76 https: //en.wikipedia.org/wiki/ Autocorrelation
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# Keep adjusting N.sub until you don't see

# any autocorrelation between subgroups

acf (subgroups.xbar)

#
#

Create a function to calculate
Shewhart chart limits

shewhart_limits <- function (xbar, S,

sub.n, N.stdev=3) {
Give the xbar and S vector containing
the subgroup means and standard
deviations. Also give the subgroup
size used. Returns the lower and upper
control limits for the Shewhart chart
(UCL and LCL) which are N.stdev away
from the target.

O ¥ oI W W W

# xdb = x.double.bar = mean of means
xdb <- mean (xbar)

s.bar <- mean(S)

num.an <- sqrt (2)+gamma (sub.n/2)

den.an <- sqgrt(sub.n-1)*gamma ((sub.n-1)/2)

an <- num.an / den.an

LCL <- xdb - 3xs.bar/(anssqgrt (sub.n))
UCL <- xdb + 3xs.bar/(anxsqrt (sub.n))
return(list (LCL, xdb, UCL))

limits <- shewhart_limits (subgroups.xbar,

subgroups.S, N.sub)

LCL <- limits[1]
xdb <- limits[2]
UCL <- limits[3]
c(LCL, xdb, UCL)

#

Any points outside these limits?

par (mar=c(4.2, 4.2, 0.5, 0.5))
par (cex.lab=1.3, cex.main=1.5,

plot (subgroups.xbar, type="b", pch=".

cex.sub=1.5, cex.axis=1.5)

cex=5, main="", ylim=ylim,
ylab="Phase I subgroups: round 1",
xlab="Sequence order")

abline (h=UCL, col="red")
abline (h=LCL, col="red")
abline (h=xdb, col="green")

lines (subgroups.xbar, type="b", pch=".

n
’

cex=5)

(continued from previous page)

Question 19

The percentage yield from a batch reactor, and the purity of the feedstock are available as the Batch
yield and purity”” data set. Assume these data are from phase 1 operation and calculate the Shewhart
chart upper and lower control limits that you would use during phase 2. Use a subgroup size of n = 3.

1.
2.
3.

What is phase 1?
What is phase 2?

Show your calculations for the upper and lower control limits for the Shewhart chart on the yield

value.

77 http:// openmv.net/info/batch-yield-and-purity
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4. Show a plot of the Shewhart chart on these phase 1 data.

Solution
Solution based on work by Ryan McBride, Stuart Young, and Mudassir Rashid (2011 class)

1. Phase 1 is the period from which historical data is taken that is known to be “in control”. From this
data, upper and lower control limits can be established for the monitored variable that contain a
specified percent of all in control data.

2. Phase 2 is the period during which new, unseen data is collected by process monitoring in real-time.
This data can be compared with the limits calculated from the “in control” data.

3. Assuming the dataset was derived from phase 1 operation, the batch yield data was grouped into
subgroups of size 3. However, since the total number of data points (N=241) is not a multiple of
three, the data set was truncated to the closest multiple of 3,i.e. Ny¢,, = 240, by removing the last
data point. Subsequently, the mean and standard deviation were calculated for each of the 80
subgroups. From this data, the lower and upper control limits were calculated as follows:

8

(=)

- 1
T = — T =753
80
k=1
S = 1 - =5.32
= 0 Sk = 9.
k=1
- S
LCL=72-3- =64.9
an+/M
UCL=7+3 5__ 85.7
o anyn
using a,, = 0.886 for a subgroup size of 3
and T = 75.3

Noticing that the mean for subgroup 42, T4 = 63.3, falls below this LCL, the control limits were
recalculated excluding this subgroup from phase 1 data (see R-code). Following this adjustment, the
new control limits were calculated to be:

e LCL=650
e UCL=85.8

4. Shewhart charts for both rounds of the yield data (before and after removing the outlier):

; - Rl \/ e | | \.\./.._.\/_ - ! \./- i, ./\.\ / I | .

Sequence order
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R code

# Thanks to Mudassir for his source code to
# recursively calculate the limits. Some
# updates were made.

file <- 'http://openmv.net/file/batch-yield-and-purity.csv'
data <- read.csv(file)

y <- datasyield

variable <- "vield"

N <- 3

# No further changes required. The code
# below will work for any new data set
subgroups <- matrix(y, N, length (y)/N)
x.mean <- numeric(length (y)/N)

x.sd <- numeric (length (y) /N)

Calculate mean and sd of subgroups
(see R-tutorial)

b S

.mean <- apply(subgroups, 2, mean)
x.sd <- apply (subgroups, 2, sd)
ylim <- range(x.mean) + c(-5, +5)

k <- 1

doloop <- TRUE

# Prevent infinite loops
while (doloop & k < 5){

num.an <- sqrt (2)~gamma (N/2)
den.an <- sqgrt (N-1)+gamma ( (N-1)/2)
an <- num.an / den.an

S <- mean (x.sd)

xdb <- mean(x.mean) # x-double bar
LCL <- xdb - (3%S/(an*sqgrt (N)))
UCL <- xdb + (3%S/(an*sgrt (N)))
print (¢ (LCL, UCL))

# Create a figure on every loop
par (mar=c(4.2, 4.2, 0.5, 0.5))
par (cex.lab=1.3, cex.main=1.5,
cex.sub=1.5, cex.axis=1.5)
plot (x.mean, type="b", pch=".",
cex=5, main="",
ylab=paste ("Phase I subgroups: round", k),
xlab="Sequence order", ylim=ylim)
abline (h=UCL, col="red")
abline (h=LCL, col="red")
abline (h=xdb, col="green")
lines (x.mean, type="b", pch=".", cex=5)

(continues on next page)
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if

N

SoX X X X Sk Sk Sk

(! (any (x.mean < LCL) any (x.mean > UCL))) {
# Finally! No more points to exclude

doloop <- FALSE

<- k + 1

.sd <- x.sd[x.mean>=LCL]
.mean <- x.mean[x.mean>=LCL]
.sd <- x.sd[x.mean<=UCL]
.mean <- x.mean[x.mean<=UCL]

end: while doloop

(continued from previous page)

Question 20

You will hear about 6-sigma processes frequently in your career. What does it mean exactly that a

process is “6-sigma capable”? Draw a diagram to help illustrate your answer.
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CHAPTER 4

| LEAST SQUARES MODELLING REVIEW

4.1 Least squares modelling in context

This section begins a new part: we start considering more than one variable at a time. However, you
will see the tools of confidence intervals and visualization from the previous sections coming into play
so that we can interpret our least squares models both analytically and visually.

The following sections, on design and analysis of experiments and latent variable models, will build
on the least squares model we learn about here.

i 4.1.1 Usage examples

Video for The material in this section is used whenever you need to interpret and quantify the relationship
this between two or more variables.

section. e Colleague: How is the yield from our lactic acid batch fermentation related to the purity of the

sucrose substrate?
You: The yield can be predicted from sucrose purity with an error of plus/minus 8%
Colleague: And how about the relationship between yield and glucose purity?
You: Over the range of our historical data, there is no discernible relationship.
¢ Engineer 1: The theoretical equation for the melt index is non-linearly related to the viscosity

Engineer 2: The linear model does not show any evidence of that, but the model’s prediction ability
does improve slightly when we use a non-linear transformation in the least squares model.

* HR manager: We use a least squares regression model to graduate personnel through our pay
grades. The model is a function of education level and number of years of experience. What do the
model coefficients mean?

151


https://www.youtube.com/watch?v=RW_8yKbMzUA&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=18
https://www.youtube.com/watch?v=RW_8yKbMzUA&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=18
https://www.youtube.com/watch?v=RW_8yKbMzUA&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=18
https://www.youtube.com/watch?v=RW_8yKbMzUA&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=18

Process Improvement Using Data

4.1.2 What you will be able to do after this section

Additional
topics

Nonlinear terms

Integer variables

Correlation
and covariance

Residuals

Leverage, discrepancy and influence

Correlation and causation

Least squares: Correlation, covariance, Interpreting software output

2 variables and least squares
Why minimize errors? Least squares: more
ANOVA than 2 variables

Confidence intervals

Multiple linear regression |
Prediction intervals

Model interpretation I
What do the least squares

assumptions mean?

4.2 References and readings

This section is only a simple review of the least squares model. More details may be found in these
references.

* Recommended: John Fox, Applied Regression Analysis and Generalized Linear Models, Sage.
* Recommended: N.R. Draper and H. Smith, Applied Regression Analysis, Wiley.

e Box, Hunter and Hunter, Statistics for Experimenters, selected portions of Chapter 10 (2nd edition),
Wiley.

e Hogg and Ledolter, Applied Statistics for Engineers and Physical Scientists, Prentice Hall.

* Montgomery and Runger, Applied Statistics and Probability for Engineers, Wiley.

i 4.3 Covariance

Video for You probably have an intuitive sense for what it means when two things are correlated. We will get to
this correlation next, but we start by first looking at covariance. Let’s take a look at an example to formalize

section. this, and to see how we can learn from data.

Consider the measurements from a gas cylinder; temperature (K) and pressure (kPa). We know the
ideal gas law applies under moderate conditions: pV' = nRT.

e Fixed volume, V =20 x 1073m?® =20 L
* Moles of gas, n = 14.1 mols of chlorine gas, molar mass = 70.9 g/mol, so this is 1 kg of gas

¢ Gas constant, R = 8.314 J/(mol.K)

Given these numbers, we can simplify the ideal gas law to: p = 5,7, where §8; = % > 0. These data
are collected from sampling the system:

152 Chapter 4. Least Squares Modelling Review


https://www.youtube.com/watch?v=tXOCOMtSWrc&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=19
https://www.youtube.com/watch?v=tXOCOMtSWrc&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=19
https://www.youtube.com/watch?v=tXOCOMtSWrc&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=19
https://www.youtube.com/watch?v=tXOCOMtSWrc&list=PLHUnYbefLmeOPRuT1sukKmRyOVd4WSxJE&index=19

Release 10d109

273 1600 42
285 1670 48
297 1730 45
309 1830 49
321 1880 41
333 1920 46
345 2000 48
357 2100 48
369 2170 45
381 2200 49
Mean 327 1910 46.1
Variance 1320 43267 8.1

The formal definition for covariance between any two variables is: [terminology used here was
defined in a previous section (page 39)]

Cov{z,y} = E{(x —7)(y — 1)}

where

(4.1)

Use this to calculate the covariance between temperature and pressure by breaking the problem into

steps:

¢ First calculate deviation variables. They are called this because they are now the deviations from the

mean: T — T and p — p. Subtracting off the mean from each vector just centers their frame of
reference to zero.

Next multiply the two vectors, element-by-element, to calculate a new vector (7' — T)(p — p).

R code

Temp <= c (273, 285, 297, 309, 321, 333,
345, 357, 369, 381)
pres <- c(1600, 1670, 1730, 1830, 1880,
1920, 2000, 2100, 2170, 2200)
humidity <- c(42, 48, 45, 49, 41, 46,
48, 48, 45, 49)

temp.centered <- temp - mean (temp)
pres.centered <- pres - mean(pres)
product <- temp.centered * pres.centered

# R does element-by-element multiplication in the above line
print (product)

# [1] 16740 10080 5400 1440 180

# 60 1620 5700 10920 15660

# Average of 'product':
mean (product) # 6780

# Calculated covariance is 7533.33
pasteO ('Covariance of temperature and ',

(continues on next page)
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(continued from previous page)

1

'pressure is ="',
round (cov (temp, pres), 2))

#

itsel
itsel

pastel0 ('C f is ="',
round (cov (temp, temp), 2))

pastel ('while the variance = ',
round (var (temp), 2))

¢ The expected value of this product can be estimated by using the average, or any other suitable
measure of location. In this case mean (product) in R gives 6780. This is the covariance value.

* More specifically, we should provide the units as well: the covariance between temperature and
pressure is 6780 [K.kPa] in this example. Similarly the covariance between temperature and
humidity is 202 [K.%].

In your own time calculate a rough numeric value and give the units of covariance for these cases:

Z Y

x = age of married partner 1 y = age of married partner 2

x = gas pressure y = gas volume at a fixed temperature
2 = mid term mark for this course y = final exam mark

x = hours worked per week y = weekly take home pay

x = cigarettes smoked per month y = age at death

x = temperature on top tray of distillation column y = top product purity

Also describe what an outlier observation would mean in these cases.

One last point is that the covariance of a variable with itself is the variance:
Cov{z,z} =V(z) = £{(x — T)(xz — T)}, a definition we saw earlier (page 39).

Using the cov (temp, pres) functionin R gives 7533.333, while we calculated 6780. The
= 7533.33, indicating that R divides by N — 1 rather than N. This

difference comes from 6780 x N1
is because the variance function in R for a vector x is internally called as cov (x, x). Since R returns
the unbiased variance, it divides through by N — 1. This inconsistency does not really matter for large
values of N, but emphasizes that one should always read the documentation for the software being

used.

Note that deviation variables are not affected by a shift in the raw data of « or y. For example,
measuring temperature in Celsius or Kelvin has no effect on the covariance number; but measuring it
in Celsius vs Fahrenheit does change the covariance value.

154 Chapter 4. Least Squares Modelling Review



Video for
this
section.

Release 10d109

4.4 Correlation

The variance and covariance values are units dependent. For example, you get a very different
covariance when calculating it using grams vs kilograms. The correlation on the other hand removes
the effect of scaling and arbitrary unit changes. It is defined as:

_ -y -9} _ (4.2)

VVAzEV{y} VvV Az V{y}

It takes the covariance value and divides through by the units of  and of y to obtain a dimensionless
result. The values of r(z,y) range from —1 to +1. Also note that r(z,y) = r(y, z).

Cov {z,y}

Correlation = r(z,y)

So returning back to our example of the gas cylinder, the correlation between temperature and
pressure, and temperature and humidity can be calculated now as:

Temp <= (273, 285, 297, 309, 32T, 333, 335, X code
357, 369, 381)
pres <- c¢(l1600, 1670, 1730, 1830, 1880, 1920,
2000, 2100, 2170, 2200)
humidity <- c (42, 48, 45, 49, 41, 46, 48,
48, 45, 49)
# Correlation between t

# and pressure 1is !

pres)

cor (temp,

tion between 't

# and

cor (temp,

humidity is low:

humidity)

18 correlation of

# What
# and pressure?

)

cor(__,

Note that correlation is the same whether we measure temperature in Celsius or Kelvin. Study the
plots here to get a feeling for the correlation value and its interpretation:
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4.5 Some definitions

Be sure that you can derive (and interpret!) these relationships, which are derived from the definition
of the covariance and correlation:

o {a} =7

o S{atyt=E{z}+E&{y}=7+7

s V{z} =&{(z —7)*}

o V{caz} = AV{z}

o Cov{z,y} = &{(z — )(y — )} which we take as the definition for covariance
o V{z+x} =2V{x} +2Cov{x,z} = 4V{x}

* Cov{z,y} = &{ay} — E{z}E{y}

e Cov{z,c} =0
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Cov{z + a,y + b} = Cov{z,y}

Cov{az, by} = ab- Cov{z,y}

V{z +y} # V{z} + V{y}, which is counter to what might be expected.

Rather:

V{ie+yt =E{(z+y-7-9)"}
=@ -2+ -1}
=&z -2 +20 -7)(y-79) + (v —9)*}
=&{(@ -2} +28{@z - D)y -9} +E{y - )"}
= V{z} + 2Cov{z,y} + V{y}
V{z +y} = V{z} + V{y}, only if z and y are independent

(4.3)

4.6 Least squares models with a single x-variable

The general linear least squares model is a very useful tool (in the right circumstances), and it is the
workhorse for a number of algorithms in data analysis.

This part covers the relationship between two variables only: x and y. In a later part on general least
squares (page 185) we will consider more than two variables and use matrix notation. But we start off
slowly here, looking first at the details for relating two variables.

We will follow these steps:

1. Model definition (this subsection)

2. Building the model

3. Interpretation of the model parameters and model outputs (coefficients, R?, and standard error Sg)
4. Consider the effect of unusual and influential data

5. Assessment of model residuals

The least squares model postulates that there is a linear relationship between measurements in vector
2 and vector y of the form:

E{y} =Bo + Bix

4.4
y =B+ Bix+e “

The By, 81 and € terms are population parameters, which are unknown (see the section on univariate
statistics (page 38)). The e term represents any unmodelled components of the linear model,
measurement error, and is simply called the error term. Notice that the error is not due to z, but is the
error in fitting y; we will return to this point in the section on least squares assumptions (page 166). Also,
if there is no relationship between x and y then 8; = 0.

We develop the least squares method to estimate these parameters; these estimates are defined as
by = Bo, by = ﬁl and e = é€. Using this new nomenclature we can write, for a given observation i:

Yi =bo + brzi + ¢

4.5
9i = bo + b1x; *5)
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P =b,+ bx

Presuming we have calculated estimates by and b; we can use the model with a new x-observation, x;,

and predict its corresponding ;. The error value, ¢;, is generally non-zero indicating out prediction

estimate of §j; is not exact. All this new nomenclature is illustrated in the figure.

i 4.6.1 Minimizing errors as an objective

Video for Our immediate aim however is to calculate the by and b; estimates from the n pairs of data collected:
this (l“i, yi)'

section.  Here are some valid approaches, usually called objective functions for making the ¢; values small.

One could use:

1.

=@

>, (e;)?, which leads to the least squares model

i (ei)*

sum of perpendicular distances to the line y = by + b1z

7, llei] is known as the least absolute deviations model, or the {-1 norm problem

least median of squared error model, which a robust form of least squares that is far less sensitive to
outliers.

The traditional least squares model, the first objective function listed, has the lowest possible variance

for by and b; when certain additional assumptions are met (page 166). The low variance of these

parameter estimates is very desirable, for both model interpretation and using the model. The other

objective functions are good alternatives and may useful in many situations, particular the last

alternative.

Other reasons for so much focus on the least squares alternative is because it is computationally

tractable by hand and very fast on computers, and it is easy to prove various mathematical properties.

The other forms take much longer to calculate, almost always have to be done on a computer, may

have multiple solutions, the solutions can change dramatically given small deviations in the data

(unstable, high variance solutions), and the mathematical proofs are difficult. Also the interpretation
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of the least squares objective function is suitable in many situations: it penalizes deviations
quadratically; i.e. large deviations much more than the smaller deviations.

You can read more about least squares alternatives in the book by Birkes and Dodge: “Alternative
Methods of Regression”.

4.6.2 Solving the least squares problem and interpreting the model

Having settled on the least squares objective function, let’s construct the problem as an optimization
problem and understand its characteristics.

The least squares problem can be posed as an unconstrained optimization problem:

n

min f(bo,bl) = Z (ei)Q

0, Y1 i=1

(4.6)
(yi — bo — brz;)?

|

i=1

Returning to our example of the gas cylinder. In this case we know that 8y = 0 from theoretical

principles. So we can solve the above problem by trial and error for b;. We expect

by~ ) = nit _ (14.1 mol)(8.314]/(mol.K))
TRy T 20 x 10-3m?

5.0 < by < 6.5, set by = 0. Then calculate the objective function using the (z;,y;) data points recorded

= 5.861 kPa/K. So construct equally spaced points of

earlier using (4.6).

300000

Objective function value
200000

100000

0

54 56 58 60 62
b1

We find our best estimate for b; roughly at 5.88, the minimum of our grid search, which is very close to
the theoretically expected value of 5.86 kPa/K.

For the case where we have both b, and b; varying we can construct a grid and tabulate the objective
function values at all points on the grid. The least squares objective function will always be shaped
like a bowl for these cases, and a unique minimum always be found, because the objective function is
convex.
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The above figure shows the general nature of the least-squares objective function where the two
horizontal axes are for by and b;, while the vertical axis represents the least squares objective function

f(bo, b1).

The illustration highlights the quadratic nature of the objective function. To find the minimum
analytically we start with equation (4.6) and take partial derivatives with respect to by and b;, and set
those equations to zero. This is a required condition at any optimal point (see a reference on
optimization theory), and leads to 2 equations in 2 unknowns.

%2(’)[)1):722(%*1)07[)13;1.):0
0/(bo, b : 4.7)
ﬂ#il) = _221: (23)(yi — by — brz;) =0

Now divide the first line through by n (the number of data pairs we are using to estimate the
parameters) and solve that equation for by. Then substitute that into the second line to solve for b;.
From this we obtain the parameters that provide the least squares optimum for f(bg, b1):

by = y — b X
b — 22i (@i = %) (yi —F) 4.8)
1= 2
Zi (z;i — %)

Verify for yourself that:
1. The first part of equation (4.7) shows ) . e; = 0, also implying the average error is zero.

2. The first part of equation (4.8) shows that the straight line equation passes through the mean of the
data (X,7y) without error.

3. From second part of equation (4.7) prove to yourself that ) _, (z;e;) = 0, just another way of saying
the dot product of the z-data and the error, xzTe, is zero.

4. Also prove and interpret that ), (y;e;) = 0, the dot product of the predictions and the errors is zero.

5. Notice that the parameter estimate for by, depends on the value of b;: we say the estimates are
correlated - you cannot estimate them independently.

6. You can also compute the second derivative of the objective function to confirm that the optimum is
indeed a minimum.

Remarks:
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1. What units does parameter estimate b; have?
* The units of y divided by the units of x.

2. Recall the temperature and pressure example (page 152): let p; = bg + b1T;:
1. What is the interpretation of coefficient b,?

¢ A one Kelvin increase in temperature is associated, on average, with an increase of b; kPa in
pressure.

2. What is the interpretation of coefficient by?

e It is the expected pressure when temperature is zero. Note: often the data used to build the
model are not close to zero, so this interpretation may have no meaning.

3. What does it mean that }_, (z;e;) = 27e = 0 (i.e. the dot product is zero):

¢ The residuals are uncorrelated with the input variables, =. There is no information in the
residuals that is in .

4. What does it mean that Y, (gie;) = 97e =0
¢ The fitted values are uncorrelated with the residuals.
5. How could the denominator term for b; equal zero? And what would that mean?

¢ This shows that as long as there is variation in the z-data that we will obtain a solution. We get
no solution to the least squares objective if there is no variation in the data.

4.6.3 Example

We will refer back to the following example several times. Calculate the least squares estimates for the
model y = by + by z from the given data. Also calculate the predicted value of §; when z; = 5.5

x 100 80 130 90 11.0 140 60 40 120 70 5.0
y 804 695 758 881 833 996 724 426 10.84 482 5.68
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11

10

8

4 6 8 10 12 14

To calculate the least squares model in R:

R code

X <— c(10, 8, 13, 9, 1L, 14, 6, 4, 12, 7, 5)
y <- c(8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68)

# "Calcul > for me the linear model,

# where y is described by x"

mod.ls <- 1lm(y ~ x)

#

# X

# 0.5001

# You can get more information with
summary (mod.ls)

print ('The model coefficients are: ')

coefficients (mod.1ls)

b0 <- coefficients(mod.ls) [1]
bl <- coefficients(mod.ls) [2]
x.new <- 5.5

y_predicted <- b0 + bl % x.new

pasteO0('Given a new x value of ', x.new,

' 1

the predicted y = ',
round (y_predicted, 3)

* bhy=3.0
* b =0.5

e When z; = 5, then j; = 3.0+ 0.5 x 5.5 = 5.75
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4.7 Least squares model analysis

Once we have fitted the by and b; terms using the data and the equations from the prior section
(page 160), it is of interest to know how well the model performed. That is what this section is about.
In particular:

1. Analysis of variance: breaking down the data’s variability into components
2. Confidence intervals for the model coefficients, by and by

3. Prediction error estimates for the y-variable

4. We will also take a look at the interpretation of the software output.

In order to perform the second part we need to make a few assumptions about the data, and if the data
follow those assumptions, then we can derive confidence intervals for the model parameters.

4.7.1 The variance breakdown

Recall that variability (page 30) is what makes our data interesting. Without variance (i.e. just flat lines)
we would have nothing to do. The analysis of variance is just a tool to show how much variability in
the y-variable is explained by:

1. Doing nothing (no model: this implies § = 7)
2. The model (3; = by + byx;)
3. How much variance is left over in the errors, e;

These 3 components must add up to the total variance we started with. By definition, the variance is
computed about a mean, so the variance of no model (i.e. the “doing nothing” case) is zero. So the
total variance in vector y is just the sum of the other two variances: the model’s variance, and the error
variance. We show this next.

Using the accompanying figure, we see that geometrically, at any fixed value of z;, that any y value
above or below the least squares line, call it y; and shown with a circle, must obey the distance

relationship:
Distance relationship: (vi—5) = @0i—73)+ Wi—v)
Squaring both sides: (vi—¥)? = (G —5)*+20 —5)(vi — i) + (yi — §:)*
Sum and simplify: Swi—-9? = @i+ (v —0:)?

Total sum of squares (TSS) = Regression SS (RegSS) + Residual SS (RSS)
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The total sum of squares (TSS) is the total variance in the vector of y-data. This broken down into two
components: the sum of squares due to regression, > _ (; — 7)?, called RegSS, and the sum of squares
of the residuals (RSS), Y e? = e”e.

It is convenient to write these sums of squares (variances) in table form, called an Analysis of Variance
(ANOVA) table:

Type of variance Distance Degrees of freedom SSQ  Mean square
Regression Vi — Y k (k = 2 in the examples so far) RegSS RegSS/k
Error Yi — Ui n—k RSS RSS/(n — k)
Total Yi — 7 n TSS TSS/n

Interpreting the standard error

The term S% = RSS/(n — k) is one way of quantifying the model’s performance. The value
Sg = /RSS/(n — k) = \/(eTe)/(n — k) is called the standard error. It is really just the standard
deviation of the error term, accounting correctly for the degrees of freedom.

Example: Assume we have a model for predicting batch yield in kilograms from x = raw material
purity, what does a standard error of 3.4 kg imply?

Answer: Recall if the assumption of normally distributed errors is correct, then this value of 3.4 kg
indicates that about two thirds of the yield predictions will lie within +3.4 kg, and that 95% of the
yield predictions will lie within £2 x 3.4 kg. We will quantify the prediction interval more precisely,
but the standard error is a good approximation for the error of y.
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Exercise

For two extreme cases:

1. y; = e;, i.e. where by = 0 and b; = 0. In other words, our y; measurements are just random noise.
2. y; = by + biz; + e;, for any values of by and by, that model fits the data perfectly, with no residuals.
Do the following in the space below:

* draw a generic plot

¢ create an ANOVA table with fake values
RegSS
TSS
mean square of regression
mean square of residuals

e write down the value of the ratio

¢ interpret what this ratio means: Fy =

From this exercise we learn that:

RegSS
¢ The null model (y; = ¢;) has ratio ;gg =
- . RegSS . . 5 .
¢ Models where the fit is perfect have a ratio TSS = 1. This number is called R*, and we will see

why it is called that next.

Derivation of R?

L2
As introduced by example in the previous part, R? = RegSS = 2 Z)Q : simply the ratio between

TSS 0 5 (wi-v)
the variance we can explain with the model (RegSS) and the total variance we started off with (TSS).

We can also write that R? =1 — %Sz, based on the fact that TSS = RegSS + RSS.

From the above ratios it is straightforward to see that if R? = 0, it requires that ; = : we are

predicting just a flat line, the mean of the y data. On the other extreme, an R? = 1 implies that §; = y;,
we have perfect predictions for every data point.

The nomenclature R? comes from the fact that it is the square of the correlation between x and y.
Recall from the correlation section (page 155) that

_ -7y -y}  Covizy}

= S WVl

and can range in value from —1 to +1. The R? ranges from 0 to +1, and is the square of r(z, y). R? is

just a way to tell how far we are between predicting a flat line (no variation) and the extreme of being
able to predict the model building data, y;, exactly.

The R? value is likely well known to anyone that has encountered least squares before. This number
must be interpreted with caution. It is most widely abused as a way to measure “how good is my model”.

These two common examples illustrate the abuse. You likely have said or heard something like this
before:
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1. “the R? value is really high, 90%, so this is a good model”.
2. “Wow), that’s a really low R?, this model can’t be right - it’s no good”.

How good, or how suitable a model is for a particular purpose is almost never related to the R? value.
The goodness of a model is better assessed by:

e your engineering judgment: does the interpretation of model parameters make sense?
* use testing data to verify the model’s predictive performance,

* using cross-validation tools (we will see this topic later on) to see how well the model performs on
new, unseen and unused testing data.

We will see later on that R? can be arbitrarily increased by adding terms to the linear model, as we will
see in the section on multiple linear regression (MLR) (page 185). So sometimes you will see the adjusted
R? used to account for the k terms used in the model:

RSS/(n — k)

2 — —
Rogy =1 TSS/(n — 1)

where k = 2 for the case of estimating a model y; = by + b1, as there are 2 parameters.

4.7.2 Confidence intervals for the model coefficients by, and b;

Note: A good reference for this section is the book by Fox (Chapter 6), and the book by Draper and
Smith.

Up to this point we have made no assumptions about the data. In fact we can calculate the model
estimates, by and b; as well as predictions from the model without any assumptions on the data. It is
only when we need additional information such as confidence intervals for the coefficients and
prediction error estimates that we must make assumptions.

Recall the b; coefficient represents the average effect on y when changing the x-variable by 1 unit. Let’s
say you are estimating a reaction rate (kinetics) from a linear least squares model, a standard step in
reactor design, you would want a measure of confidence of your coefficient. For example, if you
calculate the reaction rate as k = b; = 0.81s~! you would benefit from knowing whether the 95%
confidence interval was k = 0.81 £ 0.26s~! or k = 0.81 &+ 0.68 s~ !. In the latter case it is doubtful
whether the reaction rate is of practical significance. Point estimates of the least squares model
parameters are satisfactory, but the confidence interval information is richer to interpret.

We first take a look at some assumptions in least squares modelling, then return to deriving the
confidence interval.

Assumptions required for analysis of the least squares model

Recall that the population (true) model is y; = 8y + Bix; + €; and by and b; are our estimates of the
model’s coefficients, and e be the estimate of the true error . Note we are assuming imperfect
knowledge of the y; by lumping all errors into e;. For example, measurement error, structural error
(we are not sure the process follows a linear structure), inherent randomness, and so on.

Furthermore, our derivation for the confidence intervals of by and b; requires that we assume:
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1. Linearity of the model, and that the values of x are fixed (have no error). This implies that the error
captured by e is the error of y, since the 5y + 81x terms are fixed.

¢ In an engineering situation this would mean that your x variable has much less uncertainty than
the y variable; and is often true in many situations.

2. The variance of y is the same (constant) at all values of x, known as the constant error variance
assumption.

* The variability of y can be non-constant in several practical cases (e.g. our measurement accuracy
deteriorates at extreme high and low levels of x).

pA(ylx)
el

/ \bo+ b x

X

Ilustration of the constant error variance assumption and the normally distributed error
assumption.

3. The errors are normally distributed: e; ~ N(0,02). This also implies that y; ~ N (8o + f12:,02) from
the first linearity assumption.

4. Each error is independent of the other. This assumption is often violated in cases where the
observations are taken in time order on slow moving processes (e.g. if you have a positive error
now, your next sample is also likely to have a positive error). We will have more to say about this
later when we check for independence with an autocorrelation test (page 180).

5. In addition to the fact that the x values are fixed, we also assume they are independent of the error.
If the x value is fixed (i.e. measured without error), then it is already independent of the error.

* When the x values are not fixed, there are cases where the error gets larger as x gets
smaller /larger.

6. All y; values are independent of each other. This again is violated in cases where the data are
collected in time order and the y; values are autocorrelated.

Note: Derivation of the model’s coefficients do not require these assumptions, only the derivation of
the coefficient’s confidence intervals require this.
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Also, if we want to interpret the model’s Sg as the estimated standard deviation of the residuals, then
it helps if the residuals are normally distributed.

Confidence intervals for 5, and 3;

Recall from our discussions on confidence intervals (page 63) that we need to know the mean and
variance of the population from which by and b; come. Specifically for the least squares case:

bo ~ N (Bo, V{bo}) and by ~ N (81, V{B1})

Once we know those parameters, we can create a z-value for by and b;, and then calculate the
confidence interval for 8y and 3;. So our quest now is to calculate V{5 } and V{1 }, and we will use
the 6 assumptions we made in the previous part.

Start from the equations that define by and by in the prior section (page 160) where we showed that:
bp = y—bX

by = Zz (i —%) (vi =)
¥, (i —%)°

> (2 —%)°

That last form of expressing b; shows that every data point contributes a small amount to the

b = Y my; where m; =

coefficient b;. But notice how it is broken into 2 pieces: each term in the sum has a component due to
m; and one due to y;. The m; term is a function of the x-data only, and since we assume the x’s are
measured without error, that term has no error. The y; component is the only part that has error.

So we can write:
bi = miy1 + may2 + ... + myyN
E{b1} = E{muyr} + E{maye} + ... + E{mnyn}
V{b1} = miV{y} + miV{ya} + ... + miV{yn}
2
T; —X
Vibi} = zl: (W) V{vi}
V{yi}
>, (@ —%)°

where j is an index for all data points used to build the least squares model.

V{bi} =

Questions:

1. So now apart from the numerator term, how could you decrease the error in your model’s b;
coefficient?

* Use samples that are far from the mean of the x-data.
¢ Use more samples.
2. What do we use for the numerator term V{y;}?

* This term represents the variance of the y; values at a given point ;. If (a) there is no evidence of
lack-of-fit, and (b) if y has the same error at all levels of x, then we can write that V{y;} =
2

V{e;} = nzie;f , where n is the number of data points used, and & is the number of coefficients

estimated (2 in this case). The n — k quantity is the degrees of freedom.
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Now for the variance of by = § — b1X. The only terms with error are b, and §. So we can derive that:

Vibo} = <]1, + Z(;—X)2> V{yi}

Summary of important equations

V{Bo} ~ V{bo} = <jlv o SN X)2> Viy)
V{vi}

V{Bi} ~ V{b} = —— 0T

R S S Fe

2
where V{y} = V{e} = b eZ’ if there is no lack-of-fit and the y’s are independent of each other.
n—

For convenience we will define some short-hand notation, which is common in least squares:

S% = V{ei} = V{yz} = nz_eé{: or SE = nz_elk
S2(bo) = Vibo} = [ — X s2
E(bo) = V{bo} = N‘Fm E
Sg(br) = V{bi} = EJ(ZE_X)Q

You will see that Sg is an estimate of the standard deviation of the error (residuals), while Sg(by) and
SE(by) are the standard deviations of estimates for by and b; respectively.

Now it is straight forward to construct confidence intervals for the least squares model parameters.
You will also realize that we have to use the ¢-distribution, because we are using an estimate of the
variance.

bo — Bo by — B
< < +c —¢ <

S (bo) ‘ ¢ S (by)
bo — ctSe(bo) < Bo < bg+ . Sg(bo) b1 —caSe(b) < B1 < b1 +cSe(b)

4.9)
i Example

Video for Returning back to our ongoing example (page 161), we can calculate the confidence interval for 5, and 5.
this We calculated earlier already that by = 3.0 and b; = 0.5. Using these values we can calculate the

—Ct +Ct

A
N
A

section.  standard error:

X <— c(10, 8, 13, 9, 1L, 14, 6, 4, 12, 7
y <- c(8.04, 6.95, 7.58, 8.81, 8.33, 9.9
7.24, 4.26, 10.84, 4.82, 5.68)

# "Calculate for me the linear model,

# where y is described by x"
mod.ls <- 1lm(y ~ x)

# We can find what the "b0" and

# values are in several different ways:
summary (mod.ls)

(continues on next page)
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(continued from previous page)

# or using
print ('The model coefficients are: ')
coefficients (mod.1ls)

# Model predictions:
print ('The predicted values are: ')
predict (mod.1ls)

# 8.001 7.000 9.501 7.501 8.501
# 10.001 6.00 5.000 9.001 6.500 5.501
# Prediction error observed - predicted

error <- y - predict (mod.ls)
N <- length(x)

# The SE = standard error = 1.2366
std.error <- sgrt(sum(error”2) /

pastel ('Standard error SE = ',

round (std.error, 3))

Use that Sg value to calculate the confidence intervals for 3y and 51, and use that ¢; = 2.26 at the 95%
confidence level. You can calculate this value in R using gt (0.975, df=(N-2)). There aren — 2
degrees of freedom, the number of degrees of freedom used to calculate Sg.

First calculate the Sg value and the standard errors for the by and b;. Substitute these into the equation
for the confidence interval and calculate:

Sp=1237
S% _1.2372
¥y (@ -0 110

1 x2 1 92
2 ==+ _—= |82 =(—4+Z_)12372=12
5% (bo) <N+2j(xj—x)2>SE (11+110> 37 66

The 95% confidence interval for Sy:

SZ(by) = =0.0139

bo — Bo
— < <
= SE(bo) = o
3.0 —2.26 x v/1.266 < Bo < 3.0+ 2.26 x v/1.266
0457 < By < 5.54
The confidence interval for S;:
by — B
— < <
Ct = SE(bl) < o
0.5 —2.26 x /0.0139 < 51 < 0.5+ 2.26 x /0.0139
0.233 < B < 0.767

The plot shows the effect of varying the slope parameter, b;, from its lower bound to its upper bound.
Notice that the slope always passes through the mean of the data (7, 7).
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In many cases the confidence interval for the intercept is not of any value because the data for x is so

far away from zero, or the true value of the intercept is not of concern for us.

X <- c(10, 8, I3, 9, II, 14, 6, 4, 12, 7, 5
y <- c(8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68)

# "Calculate for me the linear model,
# where y 1s described by x"
mod.ls <- lm(y ~ x)

You can (and should at the beginning)

#
# calculate the confidence intervals as shown
# above. But there is a short-cut, to save

#

time, and is less error prone:
confint (mod.1ls)

# 2.5 % 97.5 %
# (Intercept) 0.4557369 5.5444449
# x 0.2333701 0.7668117

# If you want the confidence interval at any
# other level, for example, at the 90% level:
confint (mod.ls, level=0.90)

# 5 % 95 %
# (Intercept) 0.9383030 5.061879
# x 0.2839568 0.716225

# Compare this to the calculated value by hand

# above. It is exactly the same!

R code
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4.7.3 Prediction error estimates for the y-variable
Apart from understanding the error in the model’s coefficient, we also would like an estimate of the

error when predicting §; from the model, y; = by + biz; + e; for a new value of z;. This is known as the
prediction interval, or prediction error interval.

A naive first attempt

We might expect the error is related to the average size of the residuals. After all, our assumptions we
made earlier (page 166) showed the standard error of the residuals was the standard error of the y:

2
e
S2 —Vfe) =V iy = 2=
fed =V = =4
o _
©
o | <}
Lr') —
<
8 o | — 2«
o < — S o
z g
8 IS
S & g
g o
L o |
A
= g
o -
T T T T T 1
-04 -02 0.0 0.2 0.4 0.6
Model residuals norm quantiles

A typical histogram of the residuals looks as shown here: it is always centered around zero, and
appears to be normally distributed. So we could expect to write our prediction error as

Tnew = (bo + b1Znew) £ ¢ - Sg, where ¢ is the number of standard deviations around the average
residual, for example we could have set ¢ = 2, approximating the 95% confidence limit.

But there is something wrong with that error estimate. It says that our prediction error is constant at
any value of z;, even at values far outside the range where we built the model. This is a naive estimate
of the prediction error. We have forgotten that coefficients by and b; have error, and that error must be
propagated into Ynew-

This estimate is however a reasonable guess for the prediction interval when you only know the
model’s Si and don’t have access to a calculator or computer to calculate the proper prediction
interval, shown next.
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A better attempt to construct prediction intervals for the least squares model

Note: A good reference for this section is Draper and Smith, Applied Regression Analysis, page 79.

The derivation for the prediction interval is similar to that for b;. We require an estimate for the
variance of the predicted y at at given value of x. Let’s fix our x value at x,. and since by =¥ — b;X, we
can write the prediction at this fixed x value as g, =5 — by (z+ — X).

V{y.} = V{F} + V{br (2. — D)} + 2Cov{7, by (2. -9}
V(o) = £ 4 (0.~ 2283 (0) + 0

You may read the reference texts for the interesting derivation of this variance. However, this is only
the variance of the average predicted value of y. In other words, it is the variance we expect if we
repeatedly brought in observations at ... The prediction error of an individual observation, z;, and its
corresponding prediction, ¢, is inflated slightly further:

V{ii} = 5% (1 b Z(iw; f);g

> , where j is the index for all points used to build the least squares
model.

We may construct a prediction interval in the standard manner, assuming that y; ~ N (@, V{gi}). We
will use an estimate of this variance since we do not know the population variance. This requires we
use the ¢-distribution with n — &k degrees of freedom, at a given degree of confidence, e.g. 95%.

9 — Ui
VvV V49t
Ui — e/ Vigiy < Ui < Ui + e/ V4{gi}

This is a prediction interval for a new prediction, §; given a new x value, x;. For example, if §; =20 at a

—Ct < He

given value of z;, and if ¢;1/V{g;} = 5, then you will usually see written in reports and documents
that, the prediction was 20 £ 5. A more correct way of expressing this concept is to say the true
prediction at the value of z; lies within a bound from 15 to 25, with 95% confidence.

Implications of the prediction error of a new y

(z; — %)
Zj (z; — i)2

predicted g; at the given value of z;. Using the previous example where we calculated the least
squares line, now:

1
Let’s understand the interpretation of V{§;} = 5% (1 +-—+ as the variance of the
n

1. Now let’s say our znew happens to be X, the center point of our data. Write down the upper and
lower value of the prediction bounds for the corresponding g, given that ¢; = 2.26 at the 95%
confidence level.

1 i — )2
o The LB =; — ci/V{ii} = 7.5 — 2.26 x , | (1.237)2 (1 +—+ (xx)2> =

7.5—2.26 x1.29 =7.50 — 2.917 = 4.58

1 i —X)2
® The UB = §; + c;/V{9i} = 7.5 +2.26 x , | (1.237)2 <1 + =+ M) =

7.5+2.26x1.29=750+4+2917=104
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2. Now move left and right, away from X, and mark the confidence intervals. What general shape do

they have?

* The confidence intervals have a quadratic shape due to the square term under the square root.

The smallest prediction error will always occur at the center of the model, and expands

progressively wider as one moves away from the model
and makes intuitive sense as well.

center. This is illustrated in the figure
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4.7.4 Interpretation of software output

To complete this section we show how to interpret the output

from computer software packages. Most

packages have very standardized output, and you should make sure that whatever package you use,

that you can interpret the estimates of the parameters, their confidence intervals and get a feeling for

the model’s performance.

The following output is obtained in R for the example (page 161) we have been using in this section.

The Python version follows below.

¥ < <(I0, 5, 13, 9, 1T, 14, %, 4, 12, 7, 5 & cod¢
y <- c(8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68)
# "Calculate for me the linear model,
# where y is described by x"

mod.ls <- 1lm(y ~ X)

summary (mod.ls)

and produces this output:

Call:
Im(formula

y ~ X)

(continues on next page)
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(continued from previous page)

Residuals:
Min 10 Median 30 Max
-1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 3.0001 1.1247 2.667 0.02573 «
X 0.5001 0.1179 4.241 0.00217 =
Signif. codes: 0 “#%xx' 0.001 “%x' 0.01 "' 0.05 *.' 0.1 * " 1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170

Make sure you can calculate the following values using the equations developed so far, based on the
above software output:

¢ The intercept term by = 3.0001.

* The slope term b; = 0.5001.

¢ The standard error of the model, Sg =1.237, using n — k = 11 — 2 = 9 degrees of freedom.
¢ Using the standard error, calculate the standard error for the intercept = Sg(by) = 1.1247.
¢ Using the standard error, calculate the standard error for the slope = Sg(b1) = 0.1179.

¢ The z-value for the by term is 2.667 (R calls this the t value in the printout, but in our notes we
bo — Bo
Sk (by)
confidence interval).

have called this z =

; the value that we compare to the t-statistic and used to create the

¢ The z-value for the b; term is 4.241 (see the above comment again).

* The two probability values, Pr (> |t |), for by and b; should be familiar to you; they are the
probability with which we expect to find a value of z greater than the calculated z-value (called t
value in the output above). The smaller the number, the more confident we can be the confidence
interval contains the parameter estimate.

* You can construct the confidence interval for by or b; by using their reported standard errors and
multiplying by the corresponding ¢-value. For example, if you want 99% confidence limits, then
look up the 99% values for the ¢-distribution using n — k degrees of freedom, in this case it would be
gt ((1-0.99) /2, df=9),whichis £3.25. So the 99% confidence limits for the slope coefficient
would be [0.5 — 3.25 x 0.1179; 0.5 + 3.25 x 0.1179] = [0.12; 0.88].

e The R? = 0.6665 value.

* Be able to calculate the residuals: ¢; = y; — ; = ys — bo — b1z;. We expect the median of the residuals
to be around 0, and the rest of the summary of the residuals gives a feeling for how far the residuals
range about zero.

Using Python, you can run the following code:

Python code

import numpy as np
import statsmodels.api as sm

X = np.array([10, 8, 13, 9, 11, 14,
6, 4, 12, 7, 51)
y = np.array([8.04, 6.95, 7.58, 8.81,

(continues on next page)
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(continued from previous page)

8.33, 9.96, 7.24, 4.26,
10.84, 4.82, 5.68])

# We do want to estimate a 'b0' term
X = sm.add_constant (X)

model = sm.OLS (y, X)

results = model.fit ()

print (results.summary ())

print ('Standard error = '.format (\

np.sqrt (results.scale)))

which produces the following output:

OLS Regression Results

Dep. Variable: y R-squared: 0.667
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 17.99
Date: Tue, 01 Jan 2019 Prob (F-statistic): 0.00217
Time: 00:00:00 Log-Likelihood: -16.841
No. Observations: 11 AIC: 37.68
Df Residuals: 9 BIC: 38.48
Df Model: 1
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
const 3.0001 1.125 2.667 0.026 0.456 5.544
x1 0.5001 0.118 4.241 0.002 0.233 0.767
Omnibus: 0.082 Durbin-Watson: 3.212
Prob (Omnibus) : 0.960 Jarque-Bera (JB): 0.289
Skew: -0.122 Prob (JB) : 0.865
Kurtosis: 2.244 Cond. No. 29.1

Standard error = 1.2366033227263207

As for the R code, we can see at a glance:
¢ The intercept term by = 3.0001.
* The slope term b; = 0.5001.

¢ The standard error of the model, Sg = 1.237, using n — k = 11 — 2 = 9 degrees of freedom. The
summary output table does not show the standard error, but you can get it from
np.sqgrt (results.scale), where results is the Python object from fitting the linear model.

¢ Using the standard error, calculate the standard error for the intercept = Sg(by) = 1.1247, which is
reported directly in the table.

¢ Using the standard error, calculate the standard error for the slope = Sg(b;) = 0.1179, which is
reported directly in the table.

¢ The z-value for the by term is 2.667 (Python calls this the t-value in the printout, but in our notes we
bo — Po

Se(bo)
confidence interval).

have called this z = ; the value that we compare to the ¢-statistic and used to create the

® The z-value for the b; term is 4.241 (see the above comment again).
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¢ The two probability values, P> | t |, for by and b; should be familiar to you; they are the probability
with which we expect to find a value of = greater than the calculated z-value (called t value in the
output above). The smaller the number, the more confident we can be the confidence interval
contains the parameter estimate.

* You can construct the confidence interval for by or b; by using their reported standard errors and
multiplying by the corresponding ¢-value. For example, if you want 99% confidence limits, then
look up the 99% values for the t-distribution using n — k degrees of freedom, in this case it would be
from scipy.stats import t; t.ppf(l-(1-0.99)/2, df=9),whichis £3.25. So the 99%
confidence limits for the slope coefficient would be
[0.5 —3.25 x 0.1179; 0.5 + 3.25 x 0.1179] = [0.117; 0.883]. However, the table output gives you the
95% confidence interval. Under the column 0.025 and 0. 975 (leaving 2.5% in the lower and upper
tail respectively). For the slope coefficient, for example, this interval is [0.233; 0.767]. If you desire,
for example, the 99% confidence interval, you can adjust the code:
print (results.summary (alpha=1-0.99))

e The R? = 0.6665 value.

¢ Be able to calculate the residuals: e; = y; — §; = y; — bg — b1x;.

4.8 Investigating an existing linear model

4.8.1 Summary so far

We have introduced the linear model, y = By 4+ S1z + € and shown how to estimate the 2 model
parameters, by = 3y and b; = 3. This can be done on any data set without any additional
assumptions. But, in order to calculate confidence intervals so we can better understand our model’s
performance, we must make several assumptions of the data. In the next sections we will learn how to
interpret various plots that indicate when these assumptions are violated.

Along the way, while investigating these assumptions, we will introduce some new topics:
¢ Transformations of the raw data to better meet our assumptions
® Leverage, outliers, influence and discrepancy of the observations

¢ Inclusion of additional terms in the linear model (multiple linear regression, MLR)

The use of training and testing data

It is a common theme in any modelling work that the most informative plots are those of the residuals
- the unmodelled component of our data. We expect to see no structure in the residuals, and since the
human eye is excellent at spotting patterns in plots, it is no surprise that various types of residual plots
are used to diagnose problems with our model.
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4.8.2 The assumption of normally distributed errors

We look for normally distributed errors because if they are non-normal, then the standard error, Sg
and the other variances that depend on Sg, such as V(b1), could be inflated, and their interpretation
could be in doubt. This might, for example, lead us to infer that a slope coefficient is not important
when it actually is.

This is one of the easiest assumptions to verify: use a g-g plot (page 50) to assess the distribution of the
residuals. Do not plot the residuals in sequence or some other order to verify normality - it is extremely
difficult to see that. A g-q plot highlights very clearly when tails from the residuals are too heavy. A
histogram may also be used, but for real data sets, the choice of bin width can dramatically distort the
interpretation - rather use a g-q plot. Some code for R:

model = Im(...)

library (car)

ggPlot (model) # uses studentized residuals
ggPlot (resid (model)) # uses raw residuals

If the residuals appear non-normal, then attempt the following:

* Remove the outlying observation(s) in the tails, but only after careful investigation whether that
outlier really was unusual

¢ Use a suitable transformation of the y-variable
* Add additional terms to the least squares model (page 185)

The simple example shown here builds a model that predicts the price of a used vehicle using only the
mileage as an explanatory variable.

All data After removing ’outlier’ cars
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The group of outliers were due to 10 observations of a certain class of vehicle (Cadillac convertibles)
that distorted the model. We removed these observations, which now limits our model to be useful
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only for other vehicle types, but we gain a smaller standard error and a tighter confidence interval.
These residuals are still very non-normal though.

Before: b; = —0.173 —0.255 < 5
After: b = —0.155 —-0.230 < 5

—0.0898 SE = $9789

<
< —0.0807 Sp = $8655

The slope coefficient (interpretation: each extra mile on the odometer reduces the sale price on average
by 15 to 17 cents) has a tighter confidence interval after removing those unusual observations.

Removing the Cadillac cars from our model indicates that there is more than just mileage that affect
their resale value. In fact, the lack of normality, and structure in the residuals leads us to ask which
other explanatory variables can be included in the model.

In the next fictitious example the y-variable is non-linearly related to the x-variable. This non-linearity
in the y shows up as non-normality in the residuals if only a linear model is used. The residuals
become more linearly distributed when using a square root transformation of the y before building the
linear model.

Original data Applying a square root transformation on y
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More discussion about transformations of the data is given in the section on model linearity (page 182).

4.8.3 Non-constant error variance

It is common in many situations that the variability in y increases or decreases as y is increased (e.g.
certain properties are more consistently measured at low levels than at high levels). Similarly,
variability in y increases or decreases as x is increased (e.g. as temperature, x, increases the variability
of a particular y increases).

Violating the assumption of non-constant error variance increases the standard error, Sg, undermining
the estimates of the confidence intervals, and other analyses that depend on the standard error.
Fortunately, it is only problematic if the non-constant variance is extreme, so we can tolerate minor
violations of this assumption.

To detect this problem you should plot:

4.8. Investigating an existing linear model 179



Video for
this
section.

Process Improvement Using Data

¢ the predicted values of y (on the x-axis) against the residuals (y-axis)
¢ the x values against the residuals (y-axis)
This problem reveals itself by showing a fan shape across the plot; an example is shown in the figure.

Raw data with the calculated least squares model Fitted values vs the residuals
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To counteract this problem one can use weighted least squares, with smaller weights on the
high-variance observations, i.e. apply a weight inversely proportional to the variance. Weighted least
squares minimizes: f(b) = Z? (w;e;)?, with different weights, w; for each error term. More on this
topic can be found in the book by Draper and Smith (p 224 to 229, 3rd edition).

4.8.4 Lack of independence in the data

The assumption of independence in the data requires that values in the y variable are independent.
Given that we have assumed the x variable to be fixed, this implies that the errors, e; are independent.
The reason for independence is required for the central limit theorem, which was used to derive the
various standard errors.

Data are not independent when they are correlated with each other. This is common on slow moving
processes: for example, measurements taken from a large reactor are unlikely to change much from
one minute to the next.

Treating this problem properly comes under the topic of time-series analysis, for which a number of
excellent textbooks exist, in particular the one by Box and Jenkins. But we will show how to detect
autocorrelation, and provide a make-shift solution to avoid it.

If you suspect that there may be lack of independence, use plots of the residuals in time order. Look
for patterns such as slow drifts, or rapid criss-crossing of the zero axis.
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Time order of the y-variable Raw data with the least squares model Resi in time-order

Residuals
0

Time order X

Time order

One way around the autocorrelation is to subsample - use only every k" sample, where k is a certain
number of gaps between the points. How do we know how many gaps to leave? Use the
autocorrelation function”® to determine how many samples. You can use the acf (. ..) functioninR,
which will show how many significant lags there are between observations. Calculating the

autocorrelation accurately requires a large data set, which is a requirement anyway if you need to
subsample your data to obtain independence.

Here are some examples of the autocorrelation plot: in the first case you would have to leave at least 16

samples between each sub-sample, while the second and third cases require a gap of 1 sample, i.e. use
only every second data point.
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Another test for autocorrelation is the Durbin-Watson test. For more on this test see the book by
Draper and Smith (Chapter 7, 3rd edition); in R you can use the durbinWatsonTest (model)
function in library (car). Try generating autocorrelation of varying strength (positive, e.g.
phi_long = 0.80 and negative, e.g. phi_long = -0.75) in the code below. Inspect the plots
which are generated as a result, especially the time order plot: get a feeling for what a strong and weak

78 https: //en.wikipedia.org/wiki/ Autocorrelation
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positive/negative correlation looks like in the time order.

# Adjust this autocorrelation parameter: R code
phi_long = 0.80
N = 1005
data <- numeric (N)
for (k in 2:N) {
data[k] = rnorm(l, sd=4) +
phi_long » datalk-1]

}
x <- data + 50
summary (x)
# Plot autocorrelation in the first 100 points
plot (data[1:100], type='b',

main='Raw data', xlab = 'Time order')
plot.new()
lims = c(30,70)
plot (x[1:1000], x[2:1001], asp=1,

xlim=1lims, ylim=lims)
model <- Im(x[2:1001] ~ x[1:10001)
abline (model, col="darkgreen", lwd=2)
text (30, 30, paste("Correlation = r =",

round (cor (x[2:10017,
x[1:10001), 2)),
col="darkgreen", cex=1.5, adj = c(0, NA))

4.8.5 Linearity of the model (incorrect model specification)

Recall that the linear model is just a tool to either learn more about our data, or to make predictions.
Many cases of practical interest are from systems where the general theory is either unknown, or too
complex, or known to be non-linear.

Certain cases of non-linearity can be dealt with by simple transformations of the raw data: use a
non-linear transformation of the raw data and then build a linear model as usual. An alternative
method which fits the non-linear function, using concepts of optimization, by minimizing the sum of
squares is covered in a section on non-linear regression. Again the book by Draper and Smith (Chapter
24, 3rd edition), may be consulted if this topic is of further interest to you. Let’s take a look at a few
examples.

We saw earlier a case where a square-root transformation of the y variable made the residuals more

normally distributed. There is in fact a sequence of transformations that can be tried to modify the

p

distribution of a single variable: Ziansformed gy ginal’

e When p goes from 1 and higher, say 1.5, 1.75, 2.0, efc, it compresses small values of = and inflates
larger values.

e When p goes down from 1, 0.5 (1/z), 0.25,-0.5,-1.0 (1/x), -1.5, -2.0, etc, it compresses large values of
z and inflates smaller values.

* The case of log(x) approximates p = 0 in terms of the severity of the transformation.

In other instances we may know from first-principles theory, or some other means, what the expected
non-linear relationship is between an x and y variable.

¢ In a distillation column the temperature, 7" is inversely proportional to the logarithm of the vapour
pressure, P. So fit a linear model, y = by + b1z where x <— 1/T and where y <— P. The slope
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coefficient will have a different interpretation and a different set of units as compared to the case
when predicting vapour pressure directly from temperature.

e If y = p x ¢*, then we can take logs and estimate this equivalent linear model:
log(y) = log(p) + zlog(q), which is of the form y = by + biz. So the slope coefficient will be an
estimate of log(q).

[ ] Ify:

ot then invert both sides and estimate the model y = by + byx where by < p, by + g and

pTqx
Yy« 1/y.

¢ There are plenty of other examples, some classic cases being the non-linear models that arise during
reactor design and biological growth rate models. With some ingenuity (taking logs, inverting the
equation), these can often be simplified into linear models.

® Some cases cannot be linearized and are best estimated by non-linear least squares methods.
However, a make-shift approach which works quite well for simple cases is to perform a grid
search. For example imagine the equation to fitis y = 3; (1 — e 27), and you are given some data
pairs (x;, y;). Then for example, create a set of trial values 5; = [10, 20, 30, 40, 50] and
B2 =1[0.0,0.2,0.4,0.8]. Build up a grid for each combination of 3; and /3, and calculate the sum of
squares objective function for each point in the grid. By trial-and-error you can converge to an
approximate value of 5, and /3, that best fit the data. You can then calculate S, but not the
confidence intervals for 3; and 5.

Before launching into various transformations or non-linear least squares models, bear in mind that
the linear model may be useful over the region of interest. In the figure we might only be concerned
with using the model over the region shown, even though the system under observation is known to
behave non-linearly over a wider region of operation.
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How can we detect when the linear model is not sufficient anymore? While a g-q plot might hint at
problems, better plots are the same two plots for detecting non-constant error variance (page 179):

¢ the predicted values of y (on the x-axis) against the residuals (y-axis)
¢ the x values against the residuals (y-axis)

Here we show both plots for the example just prior (where we used a linear model for a smaller
sub-region). The last two plots look the same, because the predicted § values, § = by + b1z1; in other
words, just a linear transformation of the x values.
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Transformations are considered successful once the residuals appear to have no more structure in
them. Also bear in mind that structure in the residuals might indicate the model is missing an
additional explanatory variable (see the section on multiple linear regression (page 185)).

Another type of plot to diagnose non-linearity present in the linear model is called a
component-plus-residual plot or a partial-residual plot. This is an advanced topic not covered here, but
well covered in the Fox reference (page 152).

4.9 Summary of steps to build and investigate a linear model

1. Plot the data to assess model structure and degree of correlation between the x and y variable.

plot (%, vy) # plot the raw data

lines (lowess (x,Vy)) # superimpose non-parametric smoother to see correlation

2. Fit the model and examine the printed output.

model <- Im(y ~ x) # fit the model: "y as described by variable x"
summary (model)

confint (model)

* Investigate the model’s standard error, how does it compare to the range of the y variable?
¢ Calculate confidence intervals for the model parameters and interpret them.

3. Visualize the model’s predictions in the context of the model building data.

plot (x, vy)
lines (lowess (x,VY)) # show the smoother
abline (model, col="red") # and show the least squares model
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. Plot a normal probability plot, or a q-q plot, of the residuals. Are they normally distributed? If not,

investigate if a transformation of the y variable might improve them. But also see the additional
plots on checking for non-linearity and consider adding extra explanatory variables.

Iibrary (car)

ggPlot (resid (model))

Plot the residuals against the x-values. We expect to see no particular structure. If you see trends in
the data, it indicates that a transformation of the x variable might be appropriate, or that there are
unmodelled phenomena in the y variable - we might need an additional x variable.

plot (x, resid(model))

abline (h=0, col="red")

Plot the residuals in time (sequence) order. We expect to see no particular trends in the data. If there
are patterns in the plot, assess whether autocorrelation is present in the y variable (use the acf (y)
function in R). If so, you might have to sub-sample the data, or resort to proper time-series analysis
tools to fit your model.

plot (resid(model))
abline (h=0, col="red")

lines (lowess (resid(model), £f=0.2)) # use a shorter smoothing span

Plot the residuals against the fitted-values. By definition of the least-squares model, the covariance
between the residuals and the fitted values is zero. You can verify that e”'§ = Y7 e;5; = 0. A
fan-shape to the residuals indicates the residual variance is not constant over the range of data: you
will have to use weighted least squares to counteract that. It is better to use studentized residuals
(page 194), rather than the actual residuals, since the actual residuals can show non-constant

variance even though the errors have constant variance.

plot (predict (model), rstudent (model))
lines (lowess (predict (model), rstudent (model)))

abline (h=0, col="red")

Plot the predictions of y against the actual values of y. We expect the data to fall around a 45 degree
line.

plot (y, predict (model))
lines (lowess (y, predict (model), £=0.5)) #

abline (a=0, b=1, col="red") # a 4f

i 4.10 More than one variable: multiple linear regression (MLR)

Video for Ve now move to including more than one explanatory x variable in the linear model. We will:

this
section.

1.
2.
3.
4.
5.

introduce some matrix notation for this section

show how the optimization problem is solved to estimate the model parameters
how to interpret the model coefficients

extend our tools from the previous section to analyze the MLR model

use integer (yes/no or on/off) variables in our model.
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First some motivating examples:

* A relationship exists between z; = reactant concentration and z» = temperature with respect to y =
reaction rate. We already have a linear model between y = by + b1z, but we want to improve our
understanding of the system by learning about the temperature effect, 5.

* We want to predict melt index in our reactor from the reactor temperature, but we know that the
feed flow and pressure are also good explanatory variables for melt index. How do these additional
variables improve the predictions?

¢ We know that the quality of our plastic product is a function of the mixing time, and also the mixing
tank in which the raw materials are blended. How do we incorporate the concept of a mixing tank
indicator in our model?

i 4.10.1 Multiple linear regression: notation

Video for To help the discussion below it is useful to omit the least squares model’s intercept term. We do this by

this first centering the data.
section.
Yi = bo + biz;
y=by+bT
Yi —y=0+4bi(x; —T) by subtracting the previous lines from each other

This indicates that if we fit a model where the x and y vectors are first mean-centered, i.e. let

T = Toriginal — MeAN (Toriginal) AN Y = Yoriginal — MeaN (Yoriginal ), then we still estimate the same slope
for by, but the intercept term is zero. All we gain from this is simplification of the subsequent analysis.
Of course, if you need to know what by was, you can use the fact that by = 7 — ;7. Nothing else
changes: the R?, Sg, Sg(b;) and all other model interpretations remain the same. You can easily prove
this for yourself.

So in the rest of the this section we will omit the model’s intercept term, since it can always be
recovered afterwards.

The general linear model is given by:

Yi = bz + Baxa + ...+ Brzr + €

B

P2
yi:[x17x27'-';mk] . +6i

Br
yi=a B +e

(Ixk) (kx1)

And writing the last equation n times over for each observation in the data:

Y1 T11 12 -.. Tig| b el
Y2 Z2,1 222 ... T2k bo €2
= . . . ) LT
Yn Tn,l Tn,2 --- Tnk bk €En

y=Xb+e

where:
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e yinxl1

X:nxk

b:nx1

e exnx1

4.10.2 Estimating the model parameters via optimization

As with the simple least squares model, y = by + b1z, we aim to minimize the sum of squares of the
errors in vector e. This least squares objective function can be written compactly as:

f(b) =e'e
= (y - Xb)" (y — Xb)
=yly —2y"Xb + bX"Xb

Taking partial derivatives with respect to the entries in b and setting the result equal to a vector of
zeros, you can prove to yourself that b = (X7 X) ~'XTy. You might find the Matrix Cookbook”
useful in solving these equations and optimization problems.

Three important relationships are now noted:
1. &{b} =8
2. V{b} = (XTX) ' 52

eTe

3. An estimate of the standard error is given by: o, =~ Sg = p— where k is the number of
n—
parameters estimated in the model and n is the number of observations.
These relationships imply that our estimates of the model parameters are unbiased (the first line), and

that the variability of our parameters is related to the X7 X matrix and the model’s standard error, Sg.

Going back to the single variable case we showed in the section where we derived confidence intervals
(page 168) for by and b; that:

SQ
Vb= —"E
) > (5 =%)

Notice that our matrix definition, V{b} = (X7X) ez, gives exactly the same result, remembering
the x variables have already been centered in the matrix form. Also recall that the variability of these
estimated parameters can be reduced by (a) taking more samples, thereby increasing the denominator
size, and (b) by including observations further away from the center of the model.

7 https: //www.google.ca/search?q=The+Matrix+Cookbook/
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Example

Letz; =[1,3,4,7,9,9],and 22 = [9,9,6,3,1,2], and y = [3,5, 6, 8, 7, 10]. By inspection, the z; and z,
variables are negatively correlated, and the x; and y variables are positively correlated (also positive
covariance). Refer to the definition of covariance in an equation from the prior section (page 153).

After mean centering the data we have that x; = [—4.5, —2.5, —1.5,1.5,3.5,3.5], and
xo =1[4,4,1,-2,—4,—-3] and y = [-3.5, —1.5,—0.5,1.5, 0.5, 3.5]. So in matrix form:

[—45 4 [—3.5]
25 4 15
15 1 |05

15 -2 Y= 15
35 —4 0.5
(35 -3 35 |

The X7 X and X"y matrices can then be calculated as:

XTX — [55.5 —57.0] XTy [36.5]
—-57.0 62 —-36.0

Notice what these matrices imply (remembering that the vectors in the matrices have been centered).
The X7 X matrix is a scaled version of the covariance matrix of X. The diagonal terms show how
strongly the variable is correlated with itself, which is the variance, and always a positive number. The
off-diagonal terms are symmetrical, and represent the strength of the relationship between, in this
case, z1 and z3. The off-diagonal terms for two uncorrelated variables would be a number close to, or
equal to zero.

The inverse of the X7 X matrix is particularly important - it is related to the standard error for the
model parameters - as in: V{b} = (X7X) ' 2.

_ 0.323 0.297

(X"X) " =
0.297 0.289

The non-zero off-diagonal elements indicate that the variance of the b; coefficient is related to the
variance of the b, coefficient as well. This result is true for most regression models, indicating we can’t
accurately interpret each regression coefficient’s confidence interval on its own.

For the two variable case, y = bi21 + baxs, the general relationship is that:

1 S%
e o
1 S%
R o

where 7%, represents the correlation between variable z; and z2. What happens as the correlation
between the two variables increases?
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i 4.10.3 Interpretation of the model coefficients

Video for Let’s take a look at the case where y = by 1 + bax2. We can plot this on a 3D plot, with axes of z1, x2

this
section.

and y:

O A point below the plane
y ® A point above the plane

> X,

The points are used to fit the plane by minimizing the sum of square distances shown by vertical lines
from each point to the plane. The interpretation of the slope coefficients for b; and b; is not the same as
for the case with just a single x variable.

When we have multiple x variables, then the value of coefficient b, is the average change we would
expect in y for a one unit change in z; provided we hold z; fixed. It is the last part that is new: we
must assume that other x variables are fixed.

For example, let y = brT + bgS = —0.52T" + 3.2S5, where T is reactor temperature in Kelvin, and S is
substrate concentration in g/L, and y is yield in ug, for a bioreactor reactor system. The

br = —0.52ug/K coefficient is the decrease in yield for every 1 Kelvin increase in temperature, holding
the substrate concentration fixed.

This is a good point to introduce some terminology you might come across. Imagine you have a model
where y is the used vehicle price and z; is the mileage on the odometer (we expect that b; will be
negative) and x is the number of doors on the car. You might hear the phrase: “the effect of the
number of doors, controlling for mileage, is not significant”. The part “controlling for ...” indicates
that the controlled variable has been added to regression model, and its effect is accounted for. In other
words, for two vehicles with the same mileage, the coefficient b, indicates whether the second hand
price increases or decreases as the number of doors on the car changes (e.g. a 2-door vs a 4-door car).

In the prior example, we could say: the effect of substrate concentration on yield, controlling for
temperature, is to increase the yield by 3.2 ug for every increase in 1 g/L of substrate concentration.
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i 4.10.4 Integer (dummy, indicator) variables in the model

Video for Now that we have introduced multiple linear regression to expand our models, we also consider these

this sort of cases:

section. ¢ We want to predict yield, but want to indicate whether a radial or axial impeller was used in
the reactor and learn whether it has any effect on yield.

¢ [s there an important difference when we add the catalyst first and then the reactants, or the
reactants followed by the catalyst?

* Use an indicator variable to show if the raw material came from the supplier in Spain, India,
or Vietnam and interpret the effect of supplier on yield.

W \J

o —
<«

LYY : :

'
'

L OO | NE i
L A A

% [
v 3 [l
A i . ] L]
— ~ [

Axial and radial blades; figure from Wikipedia®
We will start with the simplest case, using the example of the radial or axial impeller. We wish to

understand the effect on yield, y[ug], as a function of the impeller type, and impeller speed, x.

y=00+bix+yd+e
y = by + b1z + gd; + e;
where d; = 0 if an axial impeller was used, or d; = 1 if a radial impeller was used. All other least

squares assumptions hold, particularly that the variance of y; is unrelated to the value of d;. For the
initial discussion let’s assume that 5; = 0, then geometrically, what is happening here is:

80 https: //en.wikipedia.org/wiki/Impeller
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O Axial impeller

>

® Radial impeller
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The v parameter, estimated by g, is the difference in intercept when using a different impeller type.
Note that the lines are parallel.

Axial impellers: y=by+0
Radial impellers: y=by+yg

Now if 81 # 0, then the horizontal lines in the above figure are tilted, but still parallel to each other.
Nothing else is new here, other than the representation of the variable used for d;. The interpretation of
its coefficient, g, is the same as with any other least squares coefficient. In this particular example, had
g = —56pug, it would indicate that the average decrease in yield is 56 ug when using a radial impeller.

The rest of the analysis tools for least squares models can be used quite powerfully. For example, a
95% confidence interval for the impeller variable might have been:

—32ug < v < 2lug
which would indicate the impeller type has no significant effect on the yield amount, the y-variable.

Integer variables are also called dummy variables or indicator variables. Really what is happening
here is the same concept as for multiple linear regression, the equation of a plane is being estimated.
We only use the equation of the plane at integer values of d, but mathematically the underlying plane
is actually continuous.
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y O Axial impeller

A ® Radial impeller

We have to introduce additional terms into the model if we have integer variables with more than 2
levels. In general, if there are p-levels, then we must include p — 1 terms. For example, if we wish to
test the effect of y = yield achieved from the raw material supplier in Spain, India, or Vietnam, we
could code:

® Spain: d;; =0and djz =0
¢ India: dipn =1 and dip =0
® Vietnam: d;; = 0and d;; = 1.

and solve for the least squares model: y = By + 121 + ... + Brxr + Y1d1 + Y2d2 + €, where v is the
effect of the Indian supplier, holding all other terms constant (i.e. it is the incremental effect of India
relative to Spain); v, is the incremental effect of the Viethamese supplier relative to the base case of the
Spanish supplier. Because of this somewhat confusing interpretation of the coefficients, sometimes
people will assume they can sacrifice an extra degree of freedom, but introduce p new terms for the p
levels of the integer variable, instead of p — 1 terms.

® Spain: d;; =land djs =0and d;3 =0
¢ India: di1 =0 and dip =1 and dig =0
e Vietnam: d;; =0and dj; =0and d;3 =1

and y = Bo + Bix1 + ... + Brxr + 11d1 + Y2d2 + Y3d3 + €, where the coefficients 71, v2 and 3 are
assumed to be more easily interpreted. However, calculating this model will fail, because there is a
built-in perfect linear combination. The X?'X matrix is not invertible.
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4.11 Outliers: discrepancy, leverage, and influence of the observations

Unusual observations will influence the model parameters and also influence the analysis from the
model (standard errors and confidence intervals). In this section we will examine how these outliers
influence the model.

Outliers are in many cases the most interesting data in a data table. They indicate whether there was a
problem with the data recording system, they indicate sometimes when the system is operating really
well, though more likely, they occur when the system is operating under poor conditions.
Nevertheless, outliers should be carefully studied for (a) why they occurred and (b) whether they
should be retained in the model.

4.11.1 Background
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A discrepancy is a data point that is unusual in the context of the least squares model, as shown in the first
figure here. On its own, from the perspective of either x or y alone, the square point is not unusual. But
it is unusual in the context of the least squares model. When that square point is removed, the updated
least squares line (dashed line) is obtained. This square point clearly has little influence on the model,
even though it is discrepant.

The discrepant square point in model B has much more influence on the model. Given that the
objective function aims to minimize the sum of squares of the deviations, it is not surprising that the
slope is pulled towards this discrepant point. Removing that point gives a different dashed-line
estimate of the slope and intercept.

In model C the square point is not discrepant in the context of the model. But it does have high
leverage on the model: a small change in this point has the potential to be influential on the model.

Can we quantify how much influence these discrepancies have on the model; and what is leverage? The
following general formula is helpful in the rest of this discussion:

Leverage x Discrepancy = Influence on the model
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4.11.2 Leverage

Leverage measures how much each observation contributes to the model’s prediction of ;. It is also
called the hat value, h;, and simply measures how far away the data point is from the center of the
model, but it takes the model’s correlation into account:

2
h; = 1 + (i —7) and

n Z;‘l:1 (z; — E)Z

S|

The average hat value can be calculated theoretically. While it is common to plot lines at 2 and 3 times
the average hat value, always plot your data and judge for yourself what a large leverage means. Also
notice that smallest hat value is always positive and greater or equal to 1/n, while the largest hat value
possible is 1.0. Continuing the example of models A, B and C: the hat values for models B and C are
the same, and are shown here. The last point has very high leverage.
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4.11.3 Discrepancy

Discrepancy can be measured by the residual distance. However the residual is not a complete

measure of discrepancy. We can imagine cases where the point has such high leverage that it drags the
entire model towards it, leaving it only with a small residual. One way then to isolate these points is to
divide the residual by 1 — leverage = 1 — h;. So we introduce a new way to quantify the residuals here,

called studentized residuals:

e; G

L SpaVI— TRy

Where e; is the residual for the ith point, as usual, but Sg(_;) is the standard error of the model when
deleting the i" point and refitting the model. This studentized residual accounts for the fact that high
leverage observations pull the model towards themselves. In practice the model is not recalculated by
omitting each point one at a time, rather there are shortcut formula that implement this efficiently. Use
the rstudent (1m(y~x)) function in R to compute the studentized residuals from a given model.
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This figure illustrates how the square point in model A and B is highly discrepant, while in model C it
does not have a high discrepancy.

4.11.4 Influence

The influence of each data point can be quantified by seeing how much the model changes when we
omit that data point. The influence of a point is a combination its leverage and its discrepancy. In
model A, the square point had large discrepancy but low leverage, so its influence on the model
parameters (slope and intercept) was small. For model C, the square point had high leverage, but low
discrepancy, so again the change in the slope and intercept of the model was small. However model B
had both large discrepancy and high leverage, so its influence is large.

One measure is called Cook’s statistic, usually called D;, and often referred to just as Cook’s D.
Conceptually, it can be viewed as the change in the model coefficients when omitting an observation,
however it is much more convenient to calculate it as follows:

62 hz

Dl': : X
kx%Ze? 1—h7;

where 1 37 e? is called the mean square error of the model (the average square error). It is easy to see
here now why influence is the product of discrepancy and leverage.

The values of D; are conveniently calculated in R using the cooks.distance (model) function. The
results for the 3 models are shown. Interestingly for model C there is a point with even higher
influence than the square point. Can you locate that point in the least squares plot?
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4.12 Enrichment topics

These topics are not covered in depth in this book, but might be of interest to you. I provide a small
introduction to each topic, showing what their purpose is, together with some examples.

4.12.1 Nonparametric models

Nonparametric modelling is a general model where the relationship between z and y is of the form:
y = f(z) + ¢, but the function f(z), i.e. the model, is left unspecified. The model is usually a smooth
function.

Consider the example of plotting Prestige (the Pineo-Porter prestige® score) against Income, from the
1971 Canadian census. A snippet of the data is given by:

education income women prestige census type
ECONOMISTS 14.44 8049 57.31 62.2 2311 prof
VOCATIONAL.COUNSELLORS 15.22 9593 34.89 58.3 2391 prof
PHYSICIANS 15.96 25308 10.56 87.2 3111 prof
NURSING.AIDES 9.45 3485 76.14 34.9 3135 bc
POSTAL.CLERKS 10.07 3739 52.27 37.2 4173 wC
TRAVEL.CLERKS 11.43 6259 39.17 35.7 4193 wC
BABYSITTERS 9.46 611 96.53 25.9 6147 <NA>
BAKERS 7.54 4199 33.30 38.9 8213 bc
MASONS 6.60 5959 0.52 36.2 8782 bc
HOUSE.PAINTERS 7.81 4549 2.46 29.9 8785 bc

The plot on the left is the raw data, while on the right is the raw data with the nonparametric model
(line) superimposed. The smoothed line is the nonparametric function, f(z), referred to above, and z =

Income ($), and y = Prestige.
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For bivariate cases, the nonparametric model is often called a scatterplot smoother. There are several

methods to calculate the model; one way is by locally weighted scatterplot smoother (LOESS),

described as follows. Inside a fixed subregion along the z-axis (called the window):

e collect the z- and y-values inside this window

* calculate a fitted y-value, but use a weighted least squares procedure, with weights that peak at the

center of the window and declines towards the edges,

81 https: //en.wikipedia.org/wiki/John_Porter_(sociologist)
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¢ record that average y-value against the window’s center (z-value)
¢ slide the window along the z axis and repeat

The model is the collection of these z- and y-values. This is why it is called nonparameteric: there are
no parameters to quantify the model. For example: if the relationship between the two variables is
linear, then a linear smooth is achieved. It is hard to express the relationship between = and y in
written form, so usually these models are shown visually. The nonparametric model is not immune to
outliers, but it is resistant to them.

More details can be found in W.S. Cleveland, Robust Locally Weighted Regression and Smoothing
Scatterplotsgz, Journal of the American Statistical Association, 74 (368), p. 829-836, 1979.

4.12.2 Robust least squares models

Outliers are often the most interesting observations and are usually the points from which we learn the
most about the system. A manual step where we review the outliers and their influence should always
done for any important model. For example, inspection of the residual plots as described in the
preceding sections.

However, the ability to build a linear model that is not heavily influenced by outliers might be of
interest in certain cases.

¢ The model is built automatically and is not reviewed by a human (e.g. as an intermediate step in a
data-mining procedure). This is increasingly common in systems that build on top of the least
squares model to improve their performance in some way.

® The human reviewer is not skilled to know which plots to inspect for influential and discrepant
observations, or may not know how to interpret these plots.

Some criticism of robust methods are that there are too many different robust methods and that these
routines are much more computationally expensive than ordinary least squares. The first point is true,
as this as a rapidly evolving field, however the latter objection is not of too much concern these days.
Robust methods are now available in most decent software packages, and are stabilizing towards a
few reliable robust estimators.

If you would like to read up some more, a nice introduction targeted at engineering readers is given in
PJ Rousseeuw’s “Tutorial to Robust Statistics®”, Journal of Chemometrics, 5, 1-20, 1991.

In R the various efforts of international researchers is being consolidated. The robustbase package
provides basic functionality that is now well established in the field; use that package if you want to
assemble various robust tools yourself. On the other hand, a more comprehensive package called
robust is also available which provides robust tools that you should use if you are not too concerned
with the details of implementation.

For example:

> data <- read.csv('http: openmv.net/file/distillation-tower.csv")

> summary (lm(dataSVapourPressure ~ data$TempC2))

(continues on next page)

82 https: //wwwijstor.org /stable /2286407
83 https://dx.doi.org/10.1002 /cem.1180050103
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(continued from previous page)

Call:
Im(formula = data$VapourPressure ~ data$TempC2)

Residuals:
Min 10 Median 30 Max
-5.59621 -2.37597 0.06674 2.00212 14.18660

Coefficients:
Estimate Std. Error t value Pr(>|[t])
(Intercept) 195.96141 4.87669 40.18 <2e-16 **xx
data$TempC2 ~0.33133 0.01013 -32.69 <2e-16 **x
Signif. codes: 0 "#xx' 0.001 '"%x' 0.01 'x' 0.05 '".' 0.1 ' ' 1

Residual standard error: 2.989 on 251 degrees of freedom
Multiple R-squared: 0.8098, Adjusted R-squared: 0.8091
F-statistic: 1069 on 1 and 251 DF, p-value: < 2.2e-16

> library (robust)
> summary (1lmRob (dataSVapourPressure ~ data$TempC2))

Call: ImRob (formula = dataS$VapourPressure ~ data$TempC2)

Residuals:
Min 10 Median 3Q Max
-5.2631296 -1.9805384 0.1677174 2.1565730 15.8846460

Coefficients:

Value Std. Error t value Pr(>|t])
(Intercept) 179.48579886 4.92870640 36.41641120 0.00000000
data$TempC2 ~0.29776778 0.01021412 -29.15256677 0.00000000

Residual standard error: 2.791 on 251 degrees of freedom
Multiple R-Squared: 0.636099

Test for Bias:
statistic p-value
M-estimate 7.962583 0.018661525

LS-estimate 12.336592 0.002094802

In this example the two models perform similarly in terms on their Sg, by and b; values, as well as
confidence intervals for them.

4.12.3 Logistic modelling (regression)

There are many practical cases in engineering modelling where our y-variable is a discrete entity. The
most common case is pass or failure, naturally coded as y = 0 for failure, and y = 1 is coded as success.
Some examples:

e Predict whether our product specifications are achieved (y = 0 or 1) given the batch reaction’s
temperature as x;, the reaction duration z, and the reactor vessel, where x3 = 0 for reactor A and
x3 = 1 for reactor B.

® Predict the likelihood of making a sale in your store (y = 0 or 1), given the customer’s age 1,
whether they are a new or existing customers, x is either 0 or 1, and the day of the week as x3.

¢ Predict if the final product will be y = acceptable, medium, or unsellable based on the raw material’s
properties x1, 2, z3 and the ambient temperature x4.
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We could naively assume that we just code our y variable as 0 or 1 (pass/fail) and build our least
squares model as usual, using the x variables. While a seemingly plausible approach, the problems are
that:

¢ The predictions when using the model are not dichotomous (0 or 1), which is not too much of a
problem if we interpret our prediction more as a probability. That is, our prediction is the
probability of success or failure, according to how we coded it originally. However the predictions
often lie outside the range [0, 1]. We can attempt to compensate for this by clamping the output to
zero or one, but this non-linearity causes instability in the estimation algorithms.

* The errors are not normally distributed.

¢ The variance of the errors are not constant and the assumption of linearity breaks down.

0.6 0.8

Function output
0.4

0.2

0.0

Function input

A logistic model however accounts for the nature of the y-variable by creating a function, called a
logistic function, which is bounded between 0 and 1. In fact you are already familiar with such a
function: the cumulative probability of the normal distribution does exactly this.

Once the y data are appropriately transformed, then the model can be calculated. In R one uses the
glm(y ~ x1 + x2, family=binomial) function to build a model where y must be a factor
variable: type help (factor) tolearn more. The model output is interpreted as any other.

4.12.4 Testing of least-squares models

Before launching into this concept, first step back and understand why we are building least squares
models. One objective is to learn more about our systems: (a) what is the effect of one variable on
another, or (b) is the effect significant (examine the confidence interval). Another objective is purely
predictive: build a model so that we can use it to make predictions. For this last case we must test our
model’s capability for accurate predictions.

The gold standard is always to have a testing data set available to quantify how good (adequate) your
least squares model is. It is important that (a) the test set has no influence on the calculation of the
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model parameters, and (b) is representative of how the model will be used in the future. We will
illustrate this with 2 examples: you need to build a predictive model for product viscosity from 3
variables on your process. You have data available, once per day, for 2006 and 2007 (730 observations).

* Use observation1,3,5,7, ... 729 to build the least squares model; then use observation 2, 4, 6, §, ...
730 to test the model.

¢ Use observations 1 to 365 (data from 2006) to build the model, and then use observations 366 to 730
(data from 2007) to test the model.

In both cases, the testing data has no influence on the model parameters. However the first case is not
representative of how the model will be used in the future. The results from the first case are likely to
give over-optimistic results, while the second case represents the intended use of the model more
closely, and will have more honest results. Find out sooner, rather than later, that the model’s
long-term performance is not what you expect. It may be that you have to keep rebuilding the model
every 3 months, updating the model with the most recent data, in order to maintain it’s predictive
performance.

How do we quantify this predictive performance? A common way is to calculate the root mean square
of the prediction error (RMSEP), this is very similar to the standard error (page 164) that we saw earlier
for regression models. Assuming the errors are centered at zero and follow a normal distribution, the
RMSEP can be interpreted as the standard deviation of the prediction residuals. It is important the
RMSEP be calculated only from new, unseen testing data. By contrast, you might see the term RMSEE
(root mean square error of estimation), which is the RMSEP, but calculated from the training
(model-building) data. The RMSEE ~ Sg = standard error; the small difference being due to the
denominator used (n versus n — k).

n

1 i
RMSEP = |~ (yrnew.i — few.i)’

The units of RMSEP and RMSEE are the same as the units of the y-variable.

In the latent variable modelling (page 315) section of the book we will introduce the concept of
cross-validation to test a model. Cross-validation uses the model training data to simulate the testing
process. So it is not as desirable as having a fresh testing data set, but it works well in many cases.
Cross-validation can be equally well applied to least squares models. We will revisit this topic later.

4.12.5 Bootstrapping

Bootstrapping is an extremely useful tool when theoretical techniques to estimate confidence intervals
and uncertainty are not available to us.

Let’s give an example where bootstrapping is strictly not required, but is definitely useful. When
fitting a least squares model of the form y = By + 812 we are interested in the confidence interval of the
slope coefficient, ;. Recall this coefficient indicates by how much the y-variable changes on average
when changing the x variable by one unit. The slope coefficient might represent a rate constant, or be
related to the magnitude of the feedback control loop gain. Whatever the case, it is important we
understand the degree of uncertainty associated with it, so we can make an appropriate judgement.

In the preceding section on least squares model analysis we derived this confidence interval (page 169) for
B1, repeated here:
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b1 — B1
Se(b1)
b1 —ciSp(b) < B1 < b1 +cSe()

—cy

+cy

Visualize this confidence in the context of the following example where x is the dose of radiation
administered (rads), and y is the survival percentage. The plot shows the data and the least square
slope coefficient (notice the y variable is a transformed variable, 1og (survival)).

The thick line represents the slope coefficient (—0.0059) using all the data. Clearly the unusual point
number 13 has some influence on that coefficient. Eliminating it and refitting the model makes the
slope coefficient more steep (—0.0078), which could change our interpretation of the model. This raises
the question though: what happens to the slope coefficient when we eliminate other points in the
training data? How sensitive are our model parameters to the data themselves?
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Bootstrapping gives us an indication of that sensitivity, as shown in the other plot. The original data
set had 14 observations. What bootstrapping does is to randomly select 14 rows from the original data,
allowing for duplicate selection. These selected rows are used to build a least squares model, and the
slope coefficient is recorded. Then another 14 random rows are selected and this process is repeated R
times (in this case R=1000). On some of these occasions the outlier points will be included, and other
times they will be excluded.

A histogram of the 1000 computed slope coefficients is shown here. This histogram gives us an
additional indication of the uncertainty of the slope coefficient. It shows many possible slope
coefficients that could have been obtained. One in particular has been marked, the slope when point
13 was omitted.

For completeness the confidence interval at the 95% level for 3; is calculated here, and also
superimposed on the histogram.

b1 — B
- <
4 S Sam) — te
_0.005915 — 2.1788 x 0.001047 < By, < —0.005915 + 2.1788 x 0.001047
00082 < B < —0.0036

This confidence interval, together with the bootstrapped values of b; give us additional insight when
when making our interpretation of b;.
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By now you should also be wondering whether you can bootstrap the confidence interval bounds!
That's left as exercise for interested readers. The above example was inspired from an example in ASA
Statistics Computing and Graphics®, 13 (1), 2002.

4.13 Exercises

Question 1
Use the distillation column data set® and choose any two variables, one for x and one as y. Then fit the
following models by least squares in any software package you prefer:

* yi=bo+ bz

* y; = by + bi(x; — T) (what does the by coefficient represent in this case?)

* (yi—7y)=bo+bi(z; —7)

Prove to yourself that centering the x and y variables gives the same model for the 3 cases in
terms of the b; slope coefficient, standard errors and other model outputs.

Solution

Once you have created an x and y variable in R, compare the output from these 3 models:

# Model 1

summary (Im(y ~ x))

# Model 2

xXx.mc <- X — mean(x)
summary (lm(y ~ x.mc))
# Model 3

y.mc <-— y - mean(y)

summary (lm(y.mc ~ x.mc))

Question 2

For a xnew value and the linear model y = by + by« the prediction interval for e is:

i £ e/ V{li}

where ¢, is the critical t-value, for example at the 95% confidence level.

Use the distillation column data set®® and with y as VapourPressure (units are kPa) and x as
TempC2 (units of degrees Farenheit) fit a linear model. Calculate the prediction interval for vapour
pressure at these 3 temperatures: 430, 480, 520 °F.

Solution

84 http://stat-computing.org/newsletter /
8 http://openmv.net/info/distillation-tower
86 http://openmv.net/info/distillation-tower
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The prediction interval is dependent on the value of 2new,; used to make the prediction. For this
model, Sp = 2.989 kPa, n. = 253, Y (z; — 7)? = 86999.6, and T = 480.82.

(xnew "512

2 (@ =)

Calculating this term manually, or using the predict (model, newdata=..., int="p") function

N 1

in R gives the 95% prediction interval:
® Znew = 430 °F: new = 53.49 £ 11.97, or [47.50, 59.47]
® Znew = 480 °F: Jnew = 36.92 £ 11.80, or [31.02, 42.82]

o Znew = 520 °F: fnew = 23.67 £ 11.90, or [17.72, 29.62]

Visualizing the prediction intervals
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dist <- read.csv('http://openmv.net/file/distillation-tower.csv')
attach (dist)
model <- lm(VapourPressure ~ TempC2)
summary (model)
# From the above output
SE = sqrt (sum(resid(model) "2) /modelsdf.residual)
n = length (TempC2)
k = modelS$Srank
x.new = data.frame (TempC2 = c (430, 480, 520)
x.bar = mean (TempC2)
x.variance = sum( (TempC2-x.bar)"2)
var.y.hat = SE"2 % (1 + 1/n + (x.new-x.bar)”"2/x.variance)
c.t = —gt(0.025, df=n-k)
y.hat = predict (model, newdata=x.new, int="p")
PI.LB = y.hat[,1] - c.txsgrt(var.y.hat)

PI.UB = y.hat[,1] + c.t*sgrt(var.y.hat)

Results from y.hat agree with PI.LB and PI.UB

SN

e

(continues on next page)
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(continued from previous page)
6819 17.71756 29.61883
] - y.hat[,2]
plot (TempC2, VapourPressure, ylim = c (17, 65), main="Visualizing the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>