Difference between revisions of "Numerical differentiation and integration"
Jump to navigation
Jump to search
Line 22: | Line 22: | ||
=== Source code used in slides === | === Source code used in slides === | ||
'''Composite trapezoidal integration''' | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 81: | Line 83: | ||
# Composite rule | # Composite rule | ||
In = f(a) | In = f(a) | ||
for k in range( | for k in range(1, n): | ||
x = x + h | x = x + h | ||
In += 2*f(x) | In += 2*f(x) | ||
Line 93: | Line 95: | ||
print(trapezcomp(func, 0, np.pi/2, 1)) # 0.785398163397 | print(trapezcomp(func, 0, np.pi/2, 1)) # 0.785398163397 | ||
print(trapezcomp(func, 0, np.pi/2, 2)) # 0.948059448969 | print(trapezcomp(func, 0, np.pi/2, 2)) # 0.948059448969 | ||
</syntaxhighlight> | |||
|} | |||
'''Romberg integration''' | |||
{| class="wikitable" | |||
|- | |||
! MATLAB | |||
! Python | |||
|- | |||
| width="50%" valign="top" | | |||
<syntaxhighlight lang="matlab"> | |||
</syntaxhighlight> | |||
Then use this function as follows: | |||
<syntaxhighlight lang="matlab"> | |||
>> f = @(x)sin(x); | |||
>> format long | |||
>> | |||
</syntaxhighlight> | |||
| width="50%" valign="top" | | |||
<syntaxhighlight lang="python"> | |||
</syntaxhighlight> | </syntaxhighlight> | ||
|} | |} |
Revision as of 13:29, 10 November 2010
Part A: Numerical differentiation
<pdfreflow> class_date = 01 to 04 November button_label = Create my course notes! show_page_layout = 1 show_frame_option = 1 pdf_file = E-Numerical-differentiation-01-Nov-2010.pdf </pdfreflow>
Part B: Numerical integration
<pdfreflow> class_date = 08 to 15 November button_label = Create my course notes! show_page_layout = 1 show_frame_option = 1 pdf_file = E-Numerical-integration-08-Nov-2010.pdf </pdfreflow>
Source code used in slides
Composite trapezoidal integration
MATLAB | Python |
---|---|
function In = trapezcomp(f, a, b, n)
% Composite trapezoidal function integration
%
% INPUTS:
% f: the function to integrate
% a: lower bound of integration
% b: upper bound
% n: number of panels to create between ``a`` and ``b``
% Initialization
h = (b-a)/n;
x = a;
% Composite rule
In =f(a);
for k=2:n
x = x + h;
In = In + 2. * f(x);
end
In = (In + f(b)) * h * 0.5;
% end of function
Then use this function as follows: >> f = @(x)sin(x);
>> I1 = trapezcomp( f, 0, pi/2, 1 ) % 0.7854
>> I2 = trapezcomp( f, 0, pi/2, 2 ) % 0.9481
|
import numpy as np
def trapezcomp(f, a, b, n):
"""
Composite trapezoidal function integration
INPUTS:
f: the function to integrate
a: lower bound of integration
b: upper bound
n: number of panels to create between ``a`` and ``b``
"""
# Initialization
h = (b - a) / n
x = a
# Composite rule
In = f(a)
for k in range(1, n):
x = x + h
In += 2*f(x)
return (In + f(b))*h*0.5
if __name__ == '__main__':
def func(x):
return np.sin(x)
print(trapezcomp(func, 0, np.pi/2, 1)) # 0.785398163397
print(trapezcomp(func, 0, np.pi/2, 2)) # 0.948059448969
|
Romberg integration
MATLAB | Python |
---|---|
Then use this function as follows: >> f = @(x)sin(x);
>> format long
>>
|