Getting started with MATLAB or Python

From Process Model Formulation and Solution: 3E4
Jump to navigation Jump to search

Introduction

MATLAB Python

MATLAB (MATrix LABoratory) is a high level computer language/ interactive software package developed and distributed by MathWorks™. Matlab was first developed in the 1970s by Cleve Molar. Cleve was later joined by John N. Little and Steve Bangert and the three went on to found MathWorks™. MATLAB excels at performing matrix operations and can handle large data sets (stored as matrices) very easily. MATLAB was originally designed as a user friendly interface for LINPACK and EISPACK and so was intended for linear algebra application. Since then MATLAB has greatly expanded it's core abilities to encompass a large array of graphic and numeric applications. These core abilities may in turn be expanded further through the addition of specialized "tool boxes".

From Wikipedia: Python is a high-level programming language whose design philosophy emphasizes code readability. Python aims to combine "remarkable power with very clear syntax", and its standard library of built-in functions is large and comprehensive.

We will use the NumPy and SciPy modules (the equivalent of a MATLAB toolbox), to provide scientific computing capabilities to Python. These modules, like MATLAB, allow you to handle large data arrays with little effort. They provide all the tools we require for this course.

We will also use the matplotlib module, which provides Python with plotting capabilities similar to MATLAB.

Access / Installation

MATLAB Python

MATLAB is installed on all computers in the John Hodgins Engineering Student Technology Centre (JHE 233A / 234) as well as the Burke Science Building Labs (BSB 241 / 242 / 244 / 249). The most up to date release of MATLAB is version R2010b. While there are some backward compatibility issues when it comes to older versions of MATLAB, for the level of code that will be encountered in this class students should not encounter issues with portability of code. A MATLAB/SIMULINK student package (version R2010A, good for Windows, Mac, and Linux) is available at the University Book Store for $112.95 (for those students who would like a copy of MATLAB on their laptop or home PC). The student versions comes with the following features:

  • MATLAB version R2010a (Everything you need to get started)
  • Simulink (Will be useful in your control classes)
  • Control System Toolbox
  • Signal Processing Toolbox
  • Signal Processing Blockset
  • Statistics Toolbox
  • Optimization Toolbox
  • Symbolic Math Toolbox
  • Image Processing Toolbox
  • Product Demos

I personally have a student copy on my home PC. It's a good buy if you have the extra cash.

Python is freely available. The latest stable version that we recommend for the course is version 2.6, because it is compatible with the external libraries that we will use.

Installation instructions for Python are available on this website.

Getting started

These descriptions are specific to Windows-users. Mac and Linux users will have a similar display.

MATLAB Python
  • When you launch MATLAB the following window will open:
MATLAB start.PNG
  • Do not worry if MATLAB does not open exactly like this. You can easily modify what windows are visible through the Desktop drop down menu. You can select the windows you want either by toggling them individually (Region A) or by selecting a template (Region B). Selecting the default template should give you the window layout you saw above.
MATLAB Desktop Dropdown.PNG


  • The core MATLAB setup has 6 main sections of interest that you will become very familiar with by the end of this course:
MATLAB Windows Labeled.PNG
1. Command Window
The command window (or "command line") provides your main means of interacting with the MATLAB software. The command line allows you to enter simple codes that are processed immediately. All program outputs also appear in the command window. While it is technically possible to write an entire program at the command line, this is not recommended. For true programs, scripts and functions will be used.
2. Current Directory
The "current directory" panel lists all of the files (MATLAB or other) that are located in the directory MATLAB is currently accessing. This directory may be changed via the drop down address bar at the top of the main program window. For a program to run properly, ALL CODES required must be in the same directory (for example, if you write a main script file that calls a separate function file, both files must be in the same directory).
3. Command History
The command history records all commands entered in the command window (for possible future reference).
4. Workspace
The workspace lists all variables, matrices, and function handles currently being stored by MATLAB. The workspace also provides basic information on the values being stored, such as size, max, min, etc. Perhaps most useful is the ability to double click variables and matrices in the workspace to open up the Variable Editor window. The variable editor is essentially a spread sheet representation of your variables that allows for easy manipulation (especially useful for large matrices).
5. Editor Window
The editor window(s) does not immediately open when you launch MATLAB. The editor window is where you write scripts and function files that can be compiled and run in the command window (to be discussed in detail later). To open a new editor window you can either go to File>New>Blank M-File, hit Ctrl+N, type "edit" at the command line, or hit the "New M-File" icon at the top left of the main screen (it looks like the little piece of paper with the explosion in the top left corner). To open a pre-existing M-File you need to switch the current directory to the location of the file (as mentioned above) and simply double click on the M-File name in the "current directory" sidebar.
6. Plot Window
When the MATLAB plot tools are used the resulting graphics are displayed in separate plot windows (more on this later).

When starting Python(x,y) you will be presented with the following window.

Start-pythonxy.jpg

Spyder (Scientific PYthon Development EnviRonment) is the name of the development environment we will be using.

  1. Select the --pylab option
  2. Then launch the Spyder environment.
  • Python(x,y) has a layout similar to that shown below
    borderless
1. Command Window
The command window is where you interact with Python. Commands entered here are processed immediately. While it is technically possible to write an entire program at the command line, this is not recommended. For true programs, you should write a script in region 5 of the software.
2. Current Directory
The "current directory" panel lists all of the files that are located in the directory Python is currently accessing. This directory may be changed by navigating to a new directory and clicking on its name.
3. Command History
The command history records all commands entered in the command window (for possible future reference).
4. Workspace
The workspace lists all variables (e.g. vectors and matrices) currently available to you. The workspace also provides the size and "type" of variable. You can double click on a variable and change its value: e.g. edit a specific entry in a vector, in a spreadsheet-like interface.
5. Editor Window
The editor window is where you write scripts and function files. After saving the file to disk, you can run it by pressing F9 (or click on Source in the top menu and select Run in interactive console)

You can have one or multiple files open at any time.

6. Plot Window
Python plots are opened in new separate windows, but can be "docked" (placed) anywhere inside the main Python(x,y) window.

Your first script

In this script we will create a plot with 10 points (a vector), consisting of the numbers \(x = [0, 2, 4, ... 18] \). Then we will also create a corresponding vector \(y = (x-8)^2 - 40\) and plot these \( (x,y)\) points, pairwise, on a plot.


MATLAB Python

There are several ways we can create our vector \(x\) in MATLAB.

x = [0 2 4 6 8 10 12 14 16 18]
x = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
x = linspace(0, 18, 10) % easiest method

There are several ways we can create our vector \(x\) in Python.

import numpy as np
from matlabplotlib.pylab import *

x = np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
x = np.linspace(0, 18, 10)   # easiest method

Every Python script in this course must start with the following two lines:

import numpy as np
from matlabplotlib.pylab import *

Advanced topic:The reason for import is due to a technical issue related to Python namespaces

Introduction to the Command Line

MATLAB

  • MATLAB IS CASE SENSITIVE!!! For example, A is not the same thing as a. This is very important when working with variable and function names.

Common Command Line Commands and Functions

doc function_name

Brings up information on any built-in MATLAB function (i.e. it accesses the help directory entry).

Before After
MATLAB doc before.PNG
MATLAB doc after.PNG
edit

Opens the text editor

Before After
MATLAB edit before.PNG
MATLAB edit after.PNG


clc

Clears the screen

Before After
MATLAB clc before.PNG
MATLAB clc after.PNG


clear

Clears the variables from the workspace (and from memory)

Before After
MATLAB clear before.PNG
MATLAB clear after.PNG


Built in Functions

MATLAB has an array of simple built in functions. Basically all of the rudimentary calculation types that you can think of (sin,cos,exp,etc.) have a built in MATLAB function that may be called at the command line and coded into a script or function file (as the need arises). A few examples are shown in the screenshot below.

MATLAB Common Functions.PNG


Built in Constants

MATLAB also has predefined variables for fundamental constants (ex. pi, Inf, i). Be wary though, as these can be easily overwritten by the user. As a rule of thumb try not to name your variables after any fundamental mathematical constant.

MATLAB constants.PNG


fprintf() and disp()

fprintf() and disp() provide a means of printing text to the command window. While obviously not useful at the command line (as the example below shows), these statements will become useful when you begin writing your own scripts and functions (either as a means of displaying intermediate results or as a means of tracking down bugs). disp() is a simple display function that prints arrays or strings directly to the command window. fprintf() is a more robust function that allows formatting of the string to be printed as well as output specification (for use in printing to files). The default output is set to the command window.

MATLAB fprintf.PNG
Semicolon

Placing a semicolon at the end of a line of code will suppress any output produced by that line. This (along with fprintf() and break points) can help in debugging code. Unless you are debugging it is good practice to end all lines of code with a semi-colon to avoid a bunch of garbage intermediate values being printed out at the command line.

MATLAB semi colon.PNG
Variables
MATLAB variables.PNG
Matrices
MATLAB Matrices.PNG
Matrix Operations
MATLAB matrix operations.PNG
Dot and Colon Operator
MATLAB dot colon.PNG
Accessing Submatrices
MATLAB sub matrices.PNG
Concatenation
MATLAB concatenation.PNG



Python


Scripts and Functions

MATLAB


Python


Code Structures

MATLAB


Python


Plotting Data

MATLAB


Python


Additional Resources

MATLAB


Python