Assignment 4 - 2010

From Process Model Formulation and Solution: 3E4
Revision as of 01:08, 2 November 2010 by Kevindunn (talk | contribs) (Created page with "{{OtherSidebar | due_dates = 08 November 2010 | dates_alt_text = Due date(s) | questions_PDF = Assignment-4b-2010.pdf | questions_text_alt = Assignment questions | solutions_PDF ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Due date(s): 08 November 2010
Nuvola mimetypes pdf.png (PDF) Assignment questions
Other instructions Hand-in at class.

<rst> <rst-options: 'toc' = False/> <rst-options: 'reset-figures' = False/> .. |m3| replace:: m\ :sup:`3`

.. rubric:: Questions 1, 2 and 3 will be posted at the end of the semester in assignment 4(a).

Question 4 [2]

==

.. Similar to Tutorial 8, 2009

The viscosity of sulphuric acid, :math:`\nu`, varies with purity, :math:`p` in the following manner:

======================== ===== =====
math:`p` [%] 20 60 80

----- ----- -----

math:`\nu` [millipascal] 1.40 5.37 17.4
======================== ===== =====
  1. . Express :math:`\nu(p)` as a quadratic function using Lagrange interpolating polynomials. Do not simplify the polynomial.
  2. . Express :math:`\nu(p)` as a quadratic function using Newton interpolating polynomials. Do not simplify the polynomial.
  3. . Fit a cubic spline through the data points: clearly show your :math:`{\bf Xa = y}` linear system of equations, then solve them using computer software; finally report your spline coefficients.
  4. . Use computer software to plot:
	*	the Newton interpolating polynomial 

* the cubic spline, * and the 3 data points on the same graph.

  1. . What is the estimated viscosity at :math:`p = 40\%` purity using linear interpolation?
  2. . Which of the estimation procedures that you used above has the closest estimate to the true value of 2.51 millipascal?

Question 5 [2]

===

The following data are collected from a bioreactor experiment, during the growth phase.

============= ===== ===== ===== =====

Time [hours] 0 1.0 2.0 4.0 6.0


----- ----- ----- ----- -----

math:`C` [g/L] 0.1 0.341 1.102 4.95 11.24
============= ===== ===== ===== =====

Fit a natural cubic spline for these data and use it to estimate the number of cells at time 3, 5, and 7 hours.

Show your matrix derivation for the linear system of equations, and solve it using computer software. Plot the cubic spline over the time range 0 to 8 hours.

Bonus question [0.5]

========

Use the cubic spline from the previous question and find the time where the cell count was approximately 10.0 g/L. Do not solve the equation by hand, but investigate `MATLAB's <http://www.mathworks.com/help/techdoc/ref/roots.html>`_ or `Python's <http://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html>`_ polynomial root finding function: ``roots(...)``

.. raw:: latex

\vspace{0.5cm} \hrule \begin{center}END\end{center} </rst>