Difference between revisions of "Modelling and scientific computing"

From Process Model Formulation and Solution: 3E4
Jump to navigation Jump to search
m
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
= Course slides =
== Process modelling slides ==
<pdfreflow>   
class_date        = 13 September 2010 (slides 1 to 8)
button_label      = Create my course notes!
show_page_layout  = 1
show_frame_option = 1
pdf_file          = A-Modelling-12-Sept-2010.pdf
</pdfreflow>


Please [[Media:A-Modelling-20-Sept-2010.pdf|download the lecture slides]]. 13 September 2010 (slides 1 to 8)<br>15 September 2010 (slides 9 to 15)<br>16 September 2010 (slides 16 to 19)<br>20 September 2010 (slides 20 to the end)


<pdfreflow>   
class_date        = 15 September 2010 (slides 9 to 15)
button_label      = Create my course notes!
show_page_layout  = 1
show_frame_option = 1
pdf_file          = A-Modelling-15-Sept-2010.pdf
</pdfreflow>




<pdfreflow>   
== Approximation and computer representation ==
class_date        = 16 September 2010 (slides 16 to 19)<br>20 September 2010 (slides 20 to the end)
button_label      = Create my course notes!
show_page_layout  = 1
show_frame_option = 1
pdf_file          = A-Modelling-20-Sept-2010.pdf
</pdfreflow>


Please [[Media:A-Approximation-and-roundoff-23-Sept-2010.pdf|download the lecture slides]]. 22 and 23 September (updated)


=Practice questions=
* More about [http://www.around.com/ariane.html the Ariane 5 rocket] 16-bit overflow
* Python code used in class for ...
 
'''Calculating relative error'''
<html><div data-datacamp-exercise data-lang="python" data-height="auto">
    <code data-type="sample-code">
import numpy as np
y = 13.0
n = 3                          # number of significant figures
rel_error = 0.5 * 10 ** (2-n)  # relative error calculation
x = y / 2.0
x_prev = 0.0
iter = 0
while abs(x - x_prev)/x > rel_error:
    x_prev = x
    x = (x + y/x) / 2.0
    print(abs(x - x_prev)/x)
    iter += 1
   
print('Used %d iterations to calculate sqrt(%f) = %.20f; '
      'true value = %.20f\n ' % (iter, y, x, np.sqrt(y)))
    </code>
</div></html>
 
 
'''Working with integers'''
<html><div data-datacamp-exercise data-lang="python" data-height="auto">
    <code data-type="sample-code">
import numpy as np
 
print(np.int16(32767))
print(np.int16(32767+1))
print(np.int16(32767+2))
 
# Smallest and largest 16-bit integer
print(np.iinfo(np.int16).min, np.iinfo(np.int16).max)
 
# Smallest and largest 32-bit integer
print(np.iinfo(np.int32).min, np.iinfo(np.int32).max)
    </code>
</div></html>
 
'''Working with floats'''
<html><div data-datacamp-exercise data-lang="python" data-height="auto">
    <code data-type="sample-code">
import numpy as np
 
help(np.finfo)    # Read what the np.finfo function does
 
f = np.float32    # single precision, 32-bit float, 4 bytes
f = np.float64    # double precision, 64-bit float, 8 bytes
 
print('machine precision = eps = %.10g' % np.finfo(f).eps)
print('number of exponent bits = %.10g' % np.finfo(f).iexp)
print('number of significand bits = %.10g' % np.finfo(f).nmant)
print('smallest floating point value = %.10g' % np.finfo(f).min)
print('largest floating point value = %.10g' % np.finfo(f).max)
 
# Approximate number of decimal digits to which this kind
# of float is precise.
print('decimal precision = %.10g' % np.finfo(f).precision)
    </code>
</div></html>
 
'''Special numbers'''
<html><div data-datacamp-exercise data-lang="python" data-height="auto">
    <code data-type="sample-code">
import numpy as np
 
# Infinities
print(np.inf, -np.inf)
 
# inf, number exceeds maximum value that
# is possible with a 64-bit float: overflow
print(np.float(1E400)) 
                       
print(np.inf * -4.0)      # -inf
print(np.divide(2.4, 0.0)) # inf
 
# NaN's
a = np.float(-2.3)
print(np.sqrt(a))  # nan
print(np.log(a))  # nan
 
# Negative zeros
a = np.float(0.0)
b = np.float(-4.0)
c = a/b
print(c)        # -0.0
print(c * c)    #  0.0
 
eps = np.finfo(np.float).eps
 
# Create a number smaller than machine precision
e = eps/3.0 
# Question: why can we create a number smaller than eps?
print(e)
 
# Interesting property: non-commutative operations can occur
# when working with values smaller than eps.  Why?
# The print out here should "True", but it prints "False"
print((1.0 + (e + e)) == (1.0 + e + e))
    </code>
</div></html>
 
==Practice questions==


<ol>
<ol>
Line 41: Line 128:
* The reaction rate for A = \(\sf -r_A = -kC_\text{A} C_\text{B}^3\)
* The reaction rate for A = \(\sf -r_A = -kC_\text{A} C_\text{B}^3\)
# Derive the time-varying component mass balance for species B.
# Derive the time-varying component mass balance for species B.
#* \( V\frac{dC_B}{dt} = F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} C_{\sf B} + 0 - 3 kC_{\sf A} C_{\sf B}^3 \)
#* \( V\frac{dC_B}{dt} = F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} C_{\sf B} + 0 - 3 kC_{\sf A} C_{\sf B}^3 V \)
# What is the steady state value of \(\sf C_B\)?  Can it be calculated without knowing the steady state value of \(\sf C_A\)?
# What is the steady state value of \(\sf C_B\)?  Can it be calculated without knowing the steady state value of \(\sf C_A\)?
#* \( F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} \overline{C}_{\sf B} - 3 k \overline{C}_{\sf A} \overline{C}^3_{\sf B} \) - we require the steady state value of \(C_{\sf A}\), denoted as \(\overline{C}_{\sf A}\), to calculate \(\overline{C}_{\sf B}\).
#* \( F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} \overline{C}_{\sf B} - 3 k \overline{C}_{\sf A} \overline{C}^3_{\sf B} V \) - we require the steady state value of \(C_{\sf A}\), denoted as \(\overline{C}_{\sf A}\), to calculate \(\overline{C}_{\sf B}\).
</ol>
</ol>
''More exercises to come''
 
[[Practice questions | More exercises available here]]

Latest revision as of 21:31, 14 January 2019

Process modelling slides

Please download the lecture slides. 13 September 2010 (slides 1 to 8)
15 September 2010 (slides 9 to 15)
16 September 2010 (slides 16 to 19)
20 September 2010 (slides 20 to the end)


Approximation and computer representation

Please download the lecture slides. 22 and 23 September (updated)

Calculating relative error

import numpy as np y = 13.0 n = 3 # number of significant figures rel_error = 0.5 * 10 ** (2-n) # relative error calculation x = y / 2.0 x_prev = 0.0 iter = 0 while abs(x - x_prev)/x > rel_error: x_prev = x x = (x + y/x) / 2.0 print(abs(x - x_prev)/x) iter += 1 print('Used %d iterations to calculate sqrt(%f) = %.20f; ' 'true value = %.20f\n ' % (iter, y, x, np.sqrt(y)))


Working with integers

import numpy as np print(np.int16(32767)) print(np.int16(32767+1)) print(np.int16(32767+2)) # Smallest and largest 16-bit integer print(np.iinfo(np.int16).min, np.iinfo(np.int16).max) # Smallest and largest 32-bit integer print(np.iinfo(np.int32).min, np.iinfo(np.int32).max)

Working with floats

import numpy as np help(np.finfo) # Read what the np.finfo function does f = np.float32 # single precision, 32-bit float, 4 bytes f = np.float64 # double precision, 64-bit float, 8 bytes print('machine precision = eps = %.10g' % np.finfo(f).eps) print('number of exponent bits = %.10g' % np.finfo(f).iexp) print('number of significand bits = %.10g' % np.finfo(f).nmant) print('smallest floating point value = %.10g' % np.finfo(f).min) print('largest floating point value = %.10g' % np.finfo(f).max) # Approximate number of decimal digits to which this kind # of float is precise. print('decimal precision = %.10g' % np.finfo(f).precision)

Special numbers

import numpy as np # Infinities print(np.inf, -np.inf) # inf, number exceeds maximum value that # is possible with a 64-bit float: overflow print(np.float(1E400)) print(np.inf * -4.0) # -inf print(np.divide(2.4, 0.0)) # inf # NaN's a = np.float(-2.3) print(np.sqrt(a)) # nan print(np.log(a)) # nan # Negative zeros a = np.float(0.0) b = np.float(-4.0) c = a/b print(c) # -0.0 print(c * c) # 0.0 eps = np.finfo(np.float).eps # Create a number smaller than machine precision e = eps/3.0 # Question: why can we create a number smaller than eps? print(e) # Interesting property: non-commutative operations can occur # when working with values smaller than eps. Why? # The print out here should "True", but it prints "False" print((1.0 + (e + e)) == (1.0 + e + e))

Practice questions

  1. From the Hangos and Cameron reference, (available here] - accessible from McMaster computers only)
    • Work through example 2.4.1 on page 33
    • Exercise A 2.1 and A 2.2 on page 37
    • Exercise A 2.4: which controlling mechanisms would you consider?
  2. Homework problem, similar to the case presented on slide 18, except
    • Use two inlet streams \(\sf F_1\) and \(\sf F_2\), and assume they are volumetric flow rates
    • An irreversible reaction occurs, \(\sf A + 3B \stackrel{r}{\rightarrow} 2C\)
    • The reaction rate for A = \(\sf -r_A = -kC_\text{A} C_\text{B}^3\)
    1. Derive the time-varying component mass balance for species B.
      • \( V\frac{dC_B}{dt} = F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} C_{\sf B} + 0 - 3 kC_{\sf A} C_{\sf B}^3 V \)
    2. What is the steady state value of \(\sf C_B\)? Can it be calculated without knowing the steady state value of \(\sf C_A\)?
      • \( F^{\rm in}_1 C^{\rm in}_{\sf B,1} + F^{\rm in}_2 C^{\rm in}_{\sf B,2} - F^{\rm out} \overline{C}_{\sf B} - 3 k \overline{C}_{\sf A} \overline{C}^3_{\sf B} V \) - we require the steady state value of \(C_{\sf A}\), denoted as \(\overline{C}_{\sf A}\), to calculate \(\overline{C}_{\sf B}\).

More exercises available here