Numerical differentiation and integration

From Process Model Formulation and Solution: 3E4
Revision as of 19:18, 10 November 2010 by Kevindunn (talk | contribs)
Jump to navigation Jump to search

Part A: Numerical differentiation

<pdfreflow> class_date = 01 to 04 November button_label = Create my course notes! show_page_layout = 1 show_frame_option = 1 pdf_file = E-Numerical-differentiation-01-Nov-2010.pdf </pdfreflow>


Part B: Numerical integration

<pdfreflow> class_date = 08 to 15 November button_label = Create my course notes! show_page_layout = 1 show_frame_option = 1 pdf_file = E-Numerical-integration-10-Nov-2010.pdf </pdfreflow>

Source code used in slides

Composite trapezoidal integration

MATLAB Python
function In = trapezcomp(f, a, b, n)
%    Composite trapezoidal function integration
%    
%    INPUTS:
%    f:  the function to integrate
%    a:  lower bound of integration
%    b:  upper bound
%    n:  number of panels to create between ``a`` and ``b``

% Initialization
h = (b-a)/n;
x = a;

% Composite rule
In =f(a);
for k=2:n
    x  = x + h;
    In = In + 2. * f(x);
end
In = (In + f(b)) * h * 0.5;
% end of function

Then use this function as follows:

>> f = @(x)sin(x);
>> I1 = trapezcomp( f, 0, pi/2, 1 )    % 0.7854  
>> I2 = trapezcomp( f, 0, pi/2, 2 )    % 0.9481
import numpy as np

def trapezcomp(f, a, b, n):
    """
    Composite trapezoidal function integration
    
    INPUTS:
    f:  the function to integrate
    a:  lower bound of integration
    b:  upper bound
    n:  number of panels to create between ``a`` and ``b``
    """
 
    # Initialization
    h = (b - a) / n
    x = a
 
    # Composite rule
    In = f(a)
    for k in range(1, n):
        x  = x + h
        In += 2*f(x)

    return (In + f(b))*h*0.5

if __name__ == '__main__':
    def func(x):
        return np.sin(x)
        
    print(trapezcomp(func, 0, np.pi/2, 1))  # 0.785398163397
    print(trapezcomp(func, 0, np.pi/2, 2))  # 0.948059448969

Romberg integration

MATLAB Python
function I = romberg(f, a, b, p)

I = zeros(p, p);
for k=1:p
    % Composite trapezoidal rule for 2^k panels
    I(k,1) = trapezcomp(f, a, b, 2^(k-1));

    % Romberg recursive formula
    for j=1:k-1
        I(k,j+1) = (4^j * I(k,j) - I(k-1,j)) / (4^j - 1);
    end

    disp(I(k,1:k));   % display intermediate results
end
% end of function

Then use this function as follows:

>> f = @(x)sin(x);
>> format long
>>