TABLE 3-3. STOICHIOMETRIC TABLE FOR A BATCH SYSTEM

Species	Initially (mol)	Change (mol)	Remaining (mol)	Concentration
A	$N_{ m A0}$	$-(N_{A0}X)$	$N_{\rm A} = N_{\rm A0} - N_{\rm A0} X$	
В	$N_{ m B0}$	$-\frac{b}{a}\left(N_{\mathrm{A0}}X\right)$	$N_{\rm B} = N_{\rm B0} - \frac{b}{a} N_{\rm A0} X$	
C	$N_{ m C0}$	$\frac{c}{a}\left(N_{\mathrm{A0}}X\right)$	$N_{\rm C} = N_{\rm C0} + \frac{c}{a} N_{\rm A0} X$	
D	$N_{ m D0}$	$\frac{d}{a}\left(N_{\mathrm{A0}}X\right)$	$N_{\rm D} = N_{\rm D0} + \frac{d}{a} N_{\rm A0} X$	
I (inerts)	N_{10}		$N_{ m I}=N_{ m I0}$	
Totals	N_{T0}		$N_T = N_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) N_{A0}X$	

TABLE 3-4. STOICHIOMETRIC TABLE FOR A FLOW SYSTEM

Species	Feed Rate to Reactor (mol/time)	Change within Reactor (mol/time)	Effluent Rate from Reactor (mol/time)	Concentration
Α	$F_{ m A0}$	$-F_{A0}X$	$F_{\rm A} = F_{\rm A0}(1-X)$	
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a} F_{A0} X$	$F_{\rm B} = F_{\rm A0} \bigg(\Theta_{\rm B} - \frac{b}{a} X \bigg)$	
C	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a} F_{A0} X$	$F_{\rm C} = F_{\rm A0} \bigg(\Theta_{\rm C} + \frac{c}{a} X \bigg)$	
D	$F_{\mathrm{D0}} = \Theta_{\mathrm{D}} F_{\mathrm{A0}}$	$\frac{d}{a} F_{A0} X$	$F_{\rm D} = F_{\rm A0} \bigg(\Theta_{\rm D} + \frac{d}{a} X \bigg)$	
I	$\underline{F_{\mathrm{I}0} = \Theta_{\mathrm{I}} F_{\mathrm{A}0}}$	_	$F_{\rm I} = F_{\rm A0}\Theta_{\rm I}$	
	F_{T0}		$F_T = F_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{A0} X$	
			$F_T = F_{T0} + \delta F_{A0} X$	

Variable-volume gas flow system

$$\begin{split} C_{\mathrm{A}} &= \frac{F_{\mathrm{A}}}{v} = \frac{F_{\mathrm{A}0}(1-X)}{v} &= \frac{F_{\mathrm{A}0}(1-X)}{v_0(1+\varepsilon X)} \left(\frac{T_0}{T}\right) \frac{P}{P_0} \\ &= C_{\mathrm{A}0} \left(\frac{1-X}{1+\varepsilon X}\right) \frac{T_0}{T} \left(\frac{P}{P_0}\right) \\ C_{\mathrm{B}} &= \frac{F_{\mathrm{B}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v} &= \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v_0(1+\varepsilon X)} \left(\frac{T_0}{T}\right) \frac{P}{P_0} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{B}} - (b/a)X}{1+\varepsilon X}\right) \frac{T_0}{T} \left(\frac{P}{P_0}\right) \\ C_{\mathrm{C}} &= \frac{F_{\mathrm{C}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v} &= \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v_0(1+\varepsilon X)} \left(\frac{T_0}{T}\right) \frac{P}{P_0} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{C}} + (c/a)X}{1+\varepsilon X}\right) \frac{T_0}{T} \left(\frac{P}{P_0}\right) \\ C_{\mathrm{D}} &= \frac{F_{\mathrm{D}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v} &= \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v_0(1+\varepsilon X)} \left(\frac{T_0}{T}\right) \frac{P}{P_0} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{D}} + (d/a)X}{1+\varepsilon X}\right) \frac{T_0}{T} \left(\frac{P}{P_0}\right) \\ C_{\mathrm{I}} &= \frac{F_{\mathrm{I}}}{v} = \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v} &= \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_0(1+\varepsilon X)} \left(\frac{T_0}{T}\right) \frac{P}{P_0} &= \frac{C_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X} \left(\frac{T_0}{T}\right) \frac{P}{P_0} \end{split}$$