Introduction to Reactor Design, 3K4 Tutorial 2

Kevin Dunn, kevin.dunn@mcmaster.ca

Selected questions will be due for assignment 2

Assignment objectives: math refresher; mol balances; working with conversion

• Reminder: always state assumptions in this tutorial, in assignments, midterms and exams.

Question 1 [4]

Make sure you can do these in a test/exam (i.e. without internet access). Let X be conversion; find:

1.
$$\int \frac{1}{(1-X)^2} \, dX =$$

2.
$$\int_{X_1}^{X_2} \frac{1}{(1-X)^2} dX =$$

3. And in general, what is:
$$\int \frac{a+x}{bx} dx =$$

Question 2 [10]

For the question we covered in the end of class last week (see last page of this tutorial), we showed the volume of a PFR required is the area under the curve. The volume required was 2.16 m³ to obtain 80% conversion.

If we used 4 CSTRs in series:

- 1. What would be the size of each reactor if we wanted 20% conversion in each reactor?
- 2. What is the total volume of these 4 reactors?
- 3. How does this total CSTR volume compare with (a) the single CSTR volume and (b) the single PFR volume?
- 4. What is the reaction rate in each reactor?

Question 3 [20]

The following reaction rate, $-r_A$ measured in units of $\left[\frac{\text{kmol}}{\text{hr.m}^3}\right]$ is observed at a particular conversion, X:

Reaction rate	Conversion				
78	0.0				
106	0.2				
120	0.4				
70	0.6				

We showed in class that the area under this curve is related to volume of the plug flow reactor.

- 1. Start from the general mol balance and derive the equation that shows the area is equal to the plug flow reactor's volume; clearly state all assumptions used in your derivation.
- 2. Assuming these assumptions are all met, calculate the plug flow reactor's volume to achieve a 60% conversion given a feed rate of $15 \, \text{mol.s}^{-1}$ to the reactor.
- 3. If there is zero conversion at the entry to the PFR and 60% at the exit; what is the conversion half-way along the reactor?
- 4. What is the conversion at 25% of the way along the reactor?
- 5. Now plot a graph a graph of conversion throughout the reactor, from start to end. The x-axis on your plot should be the volume co-ordinate, V.
- 6. What is the reaction rate at the entry of the reactor?
- 7. And at the midpoint?
- 8. And at the exit?
- 9. Plot a curve that shows the reaction rate throughout the reactor, from start to end. The x-axis on your plot should be the volume co-ordinate, V.

Question 4 [12]

A new drug is being prototyped in a batch reactor; as is becoming common-place now, this drug is grown *inside* a cell as a by-product of the regular cellular processes. So far, experiments have shown the rate of consumption of the starting material, an animal-derived cell A, is the only concentration in the rate expression.

$$-r_A = \frac{5.5C_A}{20 + C_A}$$

2

where
$$-r_A$$
 has units of $\left[\frac{\text{mol}}{\text{day.m}^3}\right]$

1. Why is a batch reactor suitable for this type of testing?

- 2. 30 mols of cellular material are added to a batch reactor of $0.5\,\mathrm{m}^3$; the liquid food source is added at the same time to the reactor, in excess. Calculate the amount of cellular material remaining in the tank after 10 days.
- 3. How many days are required to convert 80% of the starting cellular material.
- 4. Show a plot of the concentration in the tank over time until there is essentially 100% conversion.

Note: in tutorial 1 you solved a similar problem, but for a CSTR and PFR.

Table 2-2. Processed Data

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8			
$-r_{\rm A}\left(\frac{\rm mol}{\rm m^3 \cdot s}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05			
$(1/-r_A)\left(\frac{\text{m}^3 \cdot \text{s}}{\text{mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20			
$(F_{A0}/-r_A)(m^3)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0			

