Introduction to Reactor Design

ChE 3K4

Kevin Dunn, 2013
(with credit to Dr. P. Mhaskar for many of the slides)

kevin. dunn@mcmaster.ca
http://learnche.mcmaster.ca/3K4

Overall revision number: 26 (January 2013)

Chapter 2: Major ideas for this section

A Definition of conversion
B Reactor design for a specified conversion
C Graphical interpretation/solution of CSTR and PFR design equations

Conversion

Consider

$$
a A+b B \longrightarrow c D+d D
$$

Consider species A to be the basis (usually we pick the one which gets consumed to completion first, i.e. the limiting reagent).

Useful to express extent of reaction in terms of conversion of A :

$$
X_{A}=\frac{\text { moles } A \text { reacted }}{\text { moles } A \text { fed }}
$$

To simplify notation, use X (without subscript).

Conversion

Remarks

- In a batch reactor, X is a function of time
- For irreversible reaction, $X \rightarrow 1$ as $t \rightarrow \infty$
- For reversible reaction, $X \rightarrow X_{e}$ (equilibrium conversion) as $t \rightarrow \infty$
- In flow reactors (CSTR and PFR) the X is a function of volume, which reflects the amount of time reactants spend in the reactor

Design equations in terms of conversion

In this section we consider rewriting the previously derived equations from Chapter 1 (called the design equations) in terms of conversion.
We had previously used concentration C_{A} and molar flow F_{A}. Now we will use X, conversion.

We consider our 4 reactors (numbers refer to Fogler):
2.2 Batch
2.3.1 CSTR
2.3.2 PFR
2.3.3 PBR

Batch systems

First express N_{A} in terms of X
$\binom{$ moles $A}{$ reacted }$=\binom{$ moles $A}{$ fed }$\cdot\left(\frac{\text { moles } A \text { reacted }}{\text { moles } A \text { fed }}\right)$

$$
=N_{A 0} \cdot X
$$

$\binom{$ moles A at }{ time $t}=\binom{$ initial }{ moles $A}-\binom{$ moles $A}{$ consumed }

$$
\begin{aligned}
& N_{A}=N_{A 0}-N_{A 0} \cdot X \\
& N_{A}=N_{A 0}(1-X)
\end{aligned}
$$

Batch systems

- Recall the mole balance equation (assumptions?):

$$
\begin{aligned}
\frac{d N_{A}}{d t} & =r_{A} V \\
-N_{A 0} \frac{d X}{d t} & =r_{A} V \\
N_{A 0} \frac{d X}{d t} & =-r_{A} V
\end{aligned}
$$

- Integral form:

$$
\int_{0}^{t} d t=t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}
$$

Design feature for batch systems: time

Flow systems: CSTRs, PFRs and PBRs

$$
\begin{aligned}
& F_{A 0} X=\left(\frac{\text { moles } A \text { fed }}{\text { time }}\right) \cdot\left(\frac{\text { moles } A \text { reacted }}{\text { moles } A \text { fed }}\right) \\
& F_{A 0} X=\frac{\text { moles } A \text { reacted }}{\text { time }}
\end{aligned}
$$

$\binom{$ molar rate of }{A leaving }$=\binom{$ molar rate }{ of A fed }$-\binom{$ molar rate of }{A consumed }

$$
\begin{aligned}
& F_{A}=F_{A 0}-F_{A 0} X \\
& F_{A}=F_{A 0}(1-X)
\end{aligned}
$$

Draw a picture here \rightarrow

CSTR

- Recall the mole balance equation (what were the assumptions?):

$$
\begin{aligned}
& V=\frac{F_{A 0}-F_{A}}{-r_{A}} \\
& V=\frac{F_{A 0}-F_{A 0}(1-X)}{-r_{A}} \\
& V=\frac{F_{A 0} X}{-r_{A}}
\end{aligned}
$$

- r_{A} : taken inside the reactor $=$ exit conditions

Design feature for CSTR systems: volume

PFR

Recall the mole balance equation (what were the assumptions?):

$$
\frac{d F_{A}}{d V}=r_{A}
$$

But $F_{A}=F_{A 0}(1-X)$

$$
\begin{aligned}
-F_{A 0} \frac{d X}{d V} & =r_{a} \\
F_{A 0} \frac{d X}{d V} & =-r_{A}
\end{aligned}
$$

Integral form:

$$
\int_{0}^{V} d V=V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}}
$$

Design feature for PFR systems: volume

PBR

Follows a similar derivation:

$$
F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime}
$$

Integral form:

$$
W=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}^{\prime}}
$$

Design feature for PBR systems: catalyst weight

Summary so far Apply to a 1st order system Remark: we generally obtain $-r_{A}$ vs X from rate equation, e.g. $-r_{A}=k C_{A}$. Consider a flow reactor:

$$
\begin{aligned}
& F_{A}=F_{A 0}(1-X) \\
& C_{A}=\frac{F_{A}}{q}=\frac{F_{A 0}(1-X)}{q}
\end{aligned}
$$

If $q=q_{0}$ (under what conditions would this hold?):

$$
\begin{aligned}
& C_{A}=\frac{F_{A 0}}{q_{0}}(1-X) \\
& C_{A}=C_{A 0}(1-X)
\end{aligned}
$$

and

$$
-r_{A}=k C_{A}=k C_{A 0}(1-X)
$$

Example: data collected

Table 2-2. Processed Data

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\left(\frac{\mathrm{~mol}}{\mathrm{~m}^{3} \cdot \mathrm{~s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$\left(1 /-r_{\Lambda}\right)\left(\frac{\mathrm{m}^{3} \cdot \mathrm{~s}}{\mathrm{~mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$\left(F_{\mathrm{AO} 0} /-r_{\mathrm{A}}\right)\left(\mathrm{m}^{3}\right)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

- $F_{A 0}=0.4 \mathrm{~mol} . \mathrm{s}^{-1}$
- Isothermal and constant pressure; gas-phase
- We have no idea what the reaction order is

Example: plotted

Example: plotted (with best-fit line added)

CSTR solution

PFR solution

Simpson's rules

- Got 3 equally-spaced points; with spacing $=h$?

$$
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

- Got 4 equally-spaced points; with spacing $=h$?

$$
\int_{x_{0}}^{x_{3}} f(x) d x \approx \frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]
$$

- See Appendix A for other formulas (more general)

CSTR vs PFR

Profiles along the reactor: r_{A}

How was this found?

Profiles along the reactor: X

How was this
found?

Reactors in series: multiple CSTRs

South Africa, the Ergo tailings plant

Flotation cells: Bolivia

See flotation cells in series on flickr.com

Reactors in series: multiple CSTRs

CSTR solution

Rule for conversions in series

$X_{n}=\frac{\text { total moles of A reacted leaving reactor } n}{\text { moles A fed to first reactor }}$

e.g. for 2 reactors in series

$$
\begin{aligned}
V_{2} & =\frac{F_{A 1}-F_{A 2}}{-r_{A 2}} \\
& =\frac{F_{A 0}\left(1-X_{1}\right)-F_{A 0}\left(1-X_{2}\right)}{-r_{A 2}} \\
& =\frac{F_{A 0}\left(X_{2}-X_{1}\right)}{-r_{A 2}}
\end{aligned}
$$

Reactors in series: multiple CSTRs

- Consider N CSTRs in series

We observe that system approximates performance of a PFR of volume

$$
V_{\text {PFR }} \approx V_{1}+V_{2}+\cdots+V_{N}
$$

Approximation improves as N increases.

Homework exercise

- Example on page 56 (F2011)
- Example on page 62 (F2006)

3 reactors in series

3 reactors in series

Some further definitions

- Space time, or residence time:

$$
\tau=\frac{V}{q_{0}}
$$

time necessary to process one reactor volume of fluid based on entrance conditions

