Introduction to Reactor Design ChE 3K4

Kevin Dunn, 2013

(with credit to Dr. P. Mhaskar for many of the slides)

kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/3K4

Overall revision number: 28 (January 2013)

Batch system

	TABLE 3-3. STOICHIOMETRIC TABLE FOR A BATCH SYSTEM		
Species	Initially (mol)	Change (mol)	Remaining (mol)
A	$N_{\rm A0}$	$-(N_{A0}X)$	$N_{\rm A}=N_{\rm A0}-N_{\rm A0}X$
В	$N_{ m B0}$	$-\frac{b}{a}(N_{A0}X)$	$N_{\rm B} = N_{\rm B0} - \frac{b}{a} N_{\rm A0} X$
С	$N_{\rm C0}$	$\frac{c}{a}(N_{\rm A0}X)$	$N_{\rm C} = N_{\rm C0} + \frac{c}{a} N_{\rm A0} X$
D	$N_{ m D0}$	$\frac{d}{a}\left(N_{A0}X\right)$	$N_{\rm D} = N_{\rm D0} + \frac{d}{a} N_{\rm A0} X$
I (inerts)	N_{I0}		$N_{\rm I} = N_{\rm I0}$
Totals	N_{T0}		$N_T = N_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) N_{A0} X$

TABLE 3-3. STOICHIOMETRIC TABLE FOR A BATCH SYSTEM

Batch systems (derivation on board)

Flow system: columns 1, 2, 3, 4

TABLE 3-4. STOICHIOMETRIC TABLE FOR A FLOW SYSTEM

Species	Feed Rate to Reactor (mol/time)	Change within Reactor (mol/time)	Effluent Rate from Reactor (mol/time)
А	F _{A0}	$-F_{A0}X$	$F_{\rm A} = F_{\rm A0} \left(1 - X \right)$
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a}F_{A0}X$	$F_{\rm B} = F_{\rm A0} \left(\Theta_{\rm B} - \frac{b}{a} X \right)$
С	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a} F_{A0}X$	$F_{\rm C} = F_{\rm A0} \left(\Theta_{\rm C} + \frac{c}{a} X \right)$
D	$F_{\rm D0} = \Theta_{\rm D} F_{\rm A0}$	$\frac{d}{a} F_{A0} X$	$F_{\rm D} = F_{\rm A0} \left(\Theta_{\rm D} + \frac{d}{a} X \right)$
Ι	$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$	_	$F_{\rm I} = F_{\rm A0} \Theta_{\rm I}$
	F_{T0}		$F_T = F_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{A0}X$
			$F_T = F_{T0} + \delta F_{A0} X$

Flow system: column 5 (concentration)

$$\begin{split} C_{\mathrm{A}} &= \frac{F_{\mathrm{A}0}(1-X)}{v} = \frac{F_{\mathrm{A}0}(1-X)}{v} \left(\frac{T}{v}\right) \left(\frac{T}{T}\right) \frac{P}{P_{0}} = C_{\mathrm{A}0} \left(\frac{1-X}{1+\varepsilon X}\right) \frac{T}{T} \left(\frac{P}{P_{0}}\right) \\ C_{\mathrm{B}} &= \frac{F_{\mathrm{B}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v_{0}(1+\varepsilon X)} \left(\frac{T}{T}\right) \frac{P}{P_{0}} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{B}} - (b/a)X}{1+\varepsilon X}\right) \frac{T}{T} \left(\frac{P}{P_{0}}\right) \\ C_{\mathrm{C}} &= \frac{F_{\mathrm{C}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v_{0}(1+\varepsilon X)} \left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{C}} + (c/a)X}{1+\varepsilon X}\right) \frac{T_{0}}{T} \left(\frac{P}{P_{0}}\right) \\ C_{\mathrm{D}} &= \frac{F_{\mathrm{D}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v_{0}(1+\varepsilon X)} \left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{C}} + (c/a)X}{1+\varepsilon X}\right) \frac{T_{0}}{T} \left(\frac{P}{P_{0}}\right) \\ C_{\mathrm{I}} &= \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v_{0}(1+\varepsilon X)} \left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} = C_{\mathrm{A}0} \left(\frac{\Theta_{\mathrm{C}} + (d/a)X}{1+\varepsilon X}\right) \frac{T_{0}}{T} \left(\frac{P}{P_{0}}\right) \\ C_{\mathrm{I}} &= \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v} = \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_{0}(1+\varepsilon X)} \left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} = \frac{C_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X} \left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \end{split}$$

Let's derive where this all comes from.

Summary from last class

•
$$F_A = F_{A0} \left(1 - \frac{a}{a}X\right)$$

• $F_B = F_{A0} \left(\Theta_B - \frac{b}{a}X\right)$
• $F_C = F_{A0} \left(\Theta_C + \frac{c}{a}X\right)$
• $F_D = F_{A0} \left(\Theta_D + \frac{d}{a}X\right)$

In general, we write:

$$F_j = F_{A0} \left(\Theta_j + \nu_j X \right)$$

ν_j = stoichiometric ratio, accounting for sign
 ν_B = -^b/_a
 ν_D = +^d/_a

In the printed notes, page 115 (F2011)

• Create a "total concentration" (fictitious concentration)
•
$$C_T = \frac{P}{ZRT}$$

• but, $C_T = \frac{F_T}{v}$ or, as I prefer: $C_T = \frac{F_T}{q}$

In the printed notes, page 116 (F2011)

•
$$C_T = \frac{F_T}{v} = \frac{P}{ZRT}$$
 \leftarrow applies anywhere along the reactor
• $C_{T0} = \frac{F_{T0}}{v_0} = \frac{P_0}{Z_0 R T_0}$ \leftarrow applies only at the feed point

 \leftarrow applies only at the feed point

Assuming $Z_0 = Z$

Most important equation for this page $\mathbf{v} = \mathbf{v}_0 \left(\frac{F_T}{F_{T_0}}\right) \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right)$

How do we interpret this?

• Sign of
$$\left(\frac{P_0}{P}\right)$$
 and when is $\left(\frac{F_T}{F_{T0}}\right) = 1$?

In the printed notes, page 116/117

Recall the total flows (see columns 2 and 4)

- Entry flow = F_{T0} mols per second
- Flow at any other point = F_T mols per second $F_T = F_{T0} + F_{A0}\delta X$

$$\frac{F_{T}}{F_{T0}} = 1 + \left(\frac{F_{A0}}{F_{T0}}\right)\delta X = 1 + \epsilon X$$

$$\epsilon = y_{A0}\delta$$

Back to our important equation ...

$$v = v_0 \left(\frac{F_T}{F_{T0}}\right) \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right) = v_0 \left(1 + \epsilon X\right) \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right)$$

Middle of page 117 and top of page 118

•
$$C_j = rac{F_j}{v}$$
 \leftarrow applies anywhere along the reactor

• Numerator: Sub in our definition for $F_j = F_{A0} (\Theta_j + \nu_j X)$

 Denominator: Sub in our important equation for volumetric flow, v

$$C_{j} = \frac{F_{j}}{v} = \frac{F_{A0} \left(\Theta_{j} + \nu_{j} X\right)}{v_{0} \left(1 + \epsilon X\right) \left(\frac{P_{0}}{P}\right) \left(\frac{T}{T_{0}}\right)}$$

Top of page 118

The general concentration expression, for any species, at any point in the reactor:

$$C_{j} = \frac{C_{A0} \left(\Theta_{j} + \nu_{j} X\right)}{\left(1 + \epsilon X\right)} \left(\frac{P}{P_{0}}\right) \left(\frac{T_{0}}{T}\right)$$

What you should recall from chemistry

- $y_A = \text{mol fraction of A}$
- p_A = partial pressure of A
- P = total pressure
- $p_A = (y_A)(P)$
- $p_{A0} = (y_{A0})(P_0)$
- but, $p_A = C_A R T$

• so,
$$(y_A)(P) = C_A R^T$$

• or $C_A = \frac{y_A P}{RT}$

• and
$$C_{A0} = \frac{y_{A0}P_0}{RT_0}$$

 \leftarrow applies anywhere along the reactor

 \leftarrow applies only at the feed point

 \leftarrow applies anywhere along the reactor

 \leftarrow applies only at the feed point

Flow system: columns 1, 2, 3, 4

TABLE 3-4. STOICHIOMETRIC TABLE FOR A FLOW SYSTEM

Species	Feed Rate to Reactor (mol/time)	Change within Reactor (mol/time)	Effluent Rate from Reactor (mol/time)
Α	F _{A0}	$-F_{A0}X$	$F_{\rm A} = F_{\rm A0} \left(1 - X \right)$
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a}F_{A0}X$	$F_{\rm B} = F_{\rm A0} \left(\Theta_{\rm B} - \frac{b}{a} X \right)$
С	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a} F_{A0}X$	$F_{\rm C} = F_{\rm A0} \left(\Theta_{\rm C} + \frac{c}{a} X \right)$
D	$F_{\rm D0} = \Theta_{\rm D} F_{\rm A0}$	$\frac{d}{a} F_{A0} X$	$F_{\rm D} = F_{\rm A0} \left(\Theta_{\rm D} + \frac{d}{a} X \right)$
Ι	$F_{\rm I0} = \Theta_{\rm I} F_{\rm A0}$		$F_{\rm I} = F_{\rm A0} \Theta_{\rm I}$
	F_{T0}		$F_T = F_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{A0} X$
			$F_T = F_{T0} + \delta F_{A0} X$

Flow system: column 5 (concentration)

$$\begin{split} C_{\mathrm{A}} &= \frac{F_{\mathrm{A}0}(1-X)}{v} \qquad = \frac{F_{\mathrm{A}0}(1-X)}{v} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{P}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} 1-X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{B}} &= \frac{F_{\mathrm{B}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v} = & \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{B}} - (b/a)X]}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{P}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{B}} - (b/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{C}} &= \frac{F_{\mathrm{C}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v} = & \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (c/a)X]}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{P}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{C}} + (c/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{D}} &= \frac{F_{\mathrm{D}}}{v} = \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v} = & \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{C}} + (d/a)X]}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{P}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{C}} + (c/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{D}} &= \frac{F_{\mathrm{D}}}{v} = & \frac{F_{\mathrm{A}0}[\Theta_{\mathrm{D}} + (d/a)X]}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{P}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{C}} + (d/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{I}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v} = & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{C}} + (d/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} T_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{I}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v} = & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} = & C_{\mathrm{A}0} \begin{pmatrix} \Theta_{\mathrm{C}} + (d/a)X \\ 1+\varepsilon X \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{I}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v} = & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} = & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{I}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{v_{\mathrm{O}}(1+\varepsilon X)} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} = & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X} \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{O}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{O}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{O}} &= & \frac{F_{\mathrm{A}0}\Theta_{\mathrm{I}}}{1+\varepsilon X \begin{pmatrix} T_{\mathrm{O}} \\ T \end{pmatrix} \begin{pmatrix} P_{\mathrm{O}} \\ P_{\mathrm{O}} \end{pmatrix} \\ C_{\mathrm{O}} &= &$$

(Derived in the previous class)

Example

A mixture of 28% SO₂ and air, 72% are added into a flow reactor at $P_0 = 1485$ kPa and $T_0 = 500K$

$$\begin{array}{rcl} 2\mathsf{SO}_2 + \mathsf{O}_2 & \leftrightarrows & 2\mathsf{SO}_3 \\ A + \frac{1}{2}B & \leftrightarrows & C \end{array}$$

The reaction takes place isothermally, and with no pressure drop. Express the outlet concentrations of ALL species as a function of conversion, X, only.

Use the table provided to lay out your answer.

Where we left off ...

Assuming isothermal behaviour, and no pressure drop Species Concentrations $\mathbf{A} = \mathrm{SO}_2 \mid C_A = C_{A0} \left(\frac{1-X}{1+\epsilon X} \right)$ Unknowns $C_{\Delta}0$ ϵ $\mathbf{B} = \mathbf{O}_2 \quad \left| \begin{array}{c} C_B = C_{A0} \left(\frac{\Theta_B - \frac{1}{2}X}{1 + \epsilon X} \right) \right. \right|$ Θ_B Θ_{C} Θ_{l} $\mathbf{C} = \mathrm{SO}_2 \quad C_C = C_{A0} \left(\frac{\Theta_C + \frac{1}{1}X}{1 + \epsilon X} \right)$ $\mathbf{I} = \mathsf{N}_2 \quad \bigg| \ C_I = C_{A0} \left(\frac{\Theta_I}{1 + \epsilon X} \right)$

16

Concentration profile with conversion

