Introduction to Reactor Design

ChE 3K4

Kevin Dunn, 2013
(with credit to Dr. P. Mhaskar for many of the slides)

kevin. dunn@mcmaster.ca
http://learnche.mcmaster.ca/3K4

Overall revision number: 28 (January 2013)

Batch system

Table 3-3. Stoichometric Table for a Batch System

Species	Initially (mol)	Change (mol)	Remaining (mol)
A	$N_{\mathrm{A} 0}$	$-\left(N_{\mathrm{A} 0} X\right)$	$N_{\mathrm{A}}=N_{\mathrm{A} 0}-N_{\mathrm{A} 0} X$
B	$N_{\mathrm{B} 0}$	$-\frac{b}{a}\left(N_{\mathrm{A} 0} X\right)$	$N_{\mathrm{B}}=N_{\mathrm{B} 0}-\frac{b}{a} N_{\mathrm{A} 0} X$
C	$N_{\mathrm{C} 0}$	$\frac{c}{a}\left(N_{\mathrm{A} 0} X\right)$	$N_{\mathrm{C}}=N_{\mathrm{C} 0}+\frac{c}{a} N_{\mathrm{A} 0} X$
D	$N_{\mathrm{D} 0}$	$\frac{d}{a}\left(N_{\mathrm{A} 0} X\right)$	$N_{\mathrm{D}}=N_{\mathrm{D} 0}+\frac{d}{a} N_{\mathrm{A} 0} X$
I (inerts)	$N_{\mathrm{I} 0}$	-	$\frac{N_{\mathrm{I}}=N_{\mathrm{I} 0}}{}$
Totals	$N_{T 0}$		$N_{T}=N_{T 0}+\left(\frac{d}{a}+\frac{c}{a}-\frac{b}{a}-1\right) N_{\mathrm{A} 0} X$

Batch systems (derivation on board)

Flow system: columns 1, 2, 3, 4

Table 3-4. Stoichiometric Table for a Flow System

Species	Feed Rate to Reactor ($\mathrm{mol} /$ time)	Change within Reactor ($\mathrm{mol} /$ time)	Effluent Rate from Reactor ($\mathrm{mol} /$ time)
A	$F_{\text {A } 0}$	$-F_{\mathrm{A} 0} \mathrm{X}$	$F_{\mathrm{A}}=F_{\mathrm{A} 0}(1-X)$
B	$F_{\text {B } 0}=\Theta_{\mathrm{B}} F_{\text {A } 0}$	$-\frac{b}{a} F_{\mathrm{A} 0} X$	$F_{\mathrm{B}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\frac{b}{a} X\right)$
C	$F_{\mathrm{C} 0}=\Theta_{\mathrm{C}} F_{\mathrm{A} 0}$	$\frac{c}{a} F_{\text {A } 0} X$	$F_{\mathrm{C}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{C}}+\frac{c}{a} X\right)$
D	$F_{\mathrm{D} 0}=\Theta_{\mathrm{D}} F_{\mathrm{A} 0}$	$\frac{d}{a} F_{\text {A0 }} X$	$F_{\mathrm{D}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{D}}+\frac{d}{a} X\right)$
I	$\underline{F_{10}=\Theta_{\mathrm{I}} F_{\mathrm{A} 0}}$	-	$\underline{F_{\text {I }}=F_{\text {A0 }} \Theta_{\text {I }}}$
	$F_{T 0}$		$\begin{aligned} F_{T} & =F_{T 0}+\left(\frac{d}{a}+\frac{c}{a}-\frac{b}{a}-1\right) F_{\mathrm{A} 0} X \\ F_{T} & =F_{T 0}+\delta F_{\mathrm{A} 0} X \end{aligned}$

Flow system: column 5 (concentration)

$$
\begin{aligned}
& C_{\mathrm{A}}=\frac{F_{\mathrm{A}}}{v}=\frac{F_{\mathrm{A} 0}(1-X)}{v}=\frac{F_{\mathrm{A} 0}(1-X)}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \\
& C_{\mathrm{B}}=\frac{F_{\mathrm{B}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{B}}-(b / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{B}}-(b / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}=C_{\mathrm{A} 0}\left(\frac{1-X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{\mathrm{C}}=\frac{F_{\mathrm{C}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{C}}+(c / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{C}}+(c / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}=C_{\mathrm{A} 0}\left(\frac{\Theta_{\mathrm{C}}+(c / a) X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{\mathrm{D}}=\frac{F_{\mathrm{D}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{D}}+(d / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{D}}+(d / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \\
&=C_{\mathrm{A} 0}\left(\frac{\Theta_{\mathrm{D}}+(d / a) X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{1}=\frac{F_{\mathrm{I}}}{v}=\frac{F_{\mathrm{A} 0} \Theta_{1}}{v}=\frac{F_{\mathrm{A} 0} \Theta_{1}}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \quad=\frac{C_{\mathrm{A} 0} \Theta_{\mathrm{I}}}{1+\varepsilon X}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}
\end{aligned}
$$

Let's derive where this all comes from.

Summary from last class

- $F_{A}=F_{A 0}\left(1-\frac{a}{a} X\right)$
- $F_{B}=F_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)$
- $F_{C}=F_{A 0}\left(\Theta_{C}+\frac{c}{a} X\right)$
- $F_{D}=F_{A 0}\left(\Theta_{D}+\frac{d}{a} X\right)$

In general, we write:

$$
F_{j}=F_{A 0}\left(\Theta_{j}+\nu_{j} X\right)
$$

- $\nu_{j}=$ stoichiometric ratio, accounting for sign
- $\nu_{B}=-\frac{b}{a}$
- $\nu_{D}=+\frac{d}{a}$

In the printed notes, page 115 (F2011)

- Create a "total concentration" (fictitious concentration)
- $C_{T}=\frac{P}{Z R T}$
- but, $C_{T}=\frac{F_{T}}{v}$ or, as I prefer: $C_{T}=\frac{F_{T}}{q}$

In the printed notes, page 116 (F2011)

$$
\begin{aligned}
& \text { - } C_{T}=\frac{F_{T}}{v}=\frac{P}{Z R T} \leftarrow \text { applies anywhere along the reactor } \\
& \text { - } C_{T 0}=\frac{F_{T 0}}{v_{0}}=\frac{P_{0}}{Z_{0} R T_{0}} \quad \leftarrow \text { applies only at the feed point }
\end{aligned}
$$

Assuming $Z_{0}=Z$
Most important equation for this page

$$
v=v_{0}\left(\frac{F_{T}}{F_{T 0}}\right)\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right)
$$

- How do we interpret this?
- Sign of $\left(\frac{P_{0}}{P}\right)$ and when is $\left(\frac{F_{T}}{F_{T 0}}\right)=1$?

In the printed notes, page 116/117

 Recall the total flows (see columns 2 and 4)- Entry flow $=F_{T 0}$ mols per second
- Flow at any other point $=F_{T}$ mols per second

$$
\begin{aligned}
F_{T} & =F_{T 0}+F_{A 0} \delta X \\
\frac{F_{T}}{F_{T 0}} & =1+\left(\frac{F_{A 0}}{F_{T 0}}\right) \delta X=1+\epsilon X \\
\epsilon & =y_{A 0} \delta
\end{aligned}
$$

Back to our important equation ...

$$
v=v_{0}\left(\frac{F_{T}}{F_{T 0}}\right)\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right)=v_{0}(1+\epsilon X)\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right)
$$

Middle of page 117 and top of page 118

$$
C_{j}=\frac{F_{j}}{v}
$$

- Numerator: Sub in our definition for $F_{j}=F_{A 0}\left(\Theta_{j}+\nu_{j} X\right)$
- Denominator: Sub in our important equation for volumetric flow, v

$$
C_{j}=\frac{F_{j}}{v}=\frac{F_{A 0}\left(\Theta_{j}+\nu_{j} X\right)}{v_{0}(1+\epsilon X)\left(\frac{P_{0}}{P}\right)\left(\frac{T}{T_{0}}\right)}
$$

Top of page 118

The general concentration expression, for any species, at any point in the reactor:

$$
C_{j}=\frac{C_{A 0}\left(\Theta_{j}+\nu_{j} X\right)}{(1+\epsilon X)}\left(\frac{P}{P_{0}}\right)\left(\frac{T_{0}}{T}\right)
$$

What you should recall from chemistry

- $y_{A}=$ mol fraction of A
- $p_{A}=$ partial pressure of A
- $P=$ total pressure
- $p_{A}=\left(y_{A}\right)(P)$
\leftarrow applies anywhere along the reactor
- $p_{A 0}=\left(y_{A 0}\right)\left(P_{0}\right)$
\leftarrow applies only at the feed point
- but, $p_{A}=C_{A} R T$
- so, $\left(y_{A}\right)(P)=C_{A} R T$
- or $C_{A}=\frac{y_{A} P}{R T}$
\leftarrow applies anywhere along the reactor
- and $C_{A 0}=\frac{y_{A 0} P_{0}}{R T_{0}}$

Flow system: columns 1, 2, 3, 4

Table 3-4. Stoichiometric Table for a Flow System

	Feed Rate to Reactor Species (mol/time)	Change within Reactor $(\mathrm{mol} / \mathrm{time})$	Effluent Rate from Reactor (mol/time)
A	$F_{\mathrm{A} 0}$	$-F_{\mathrm{A} 0} X$	$F_{\mathrm{A}}=F_{\mathrm{A} 0}(1-X)$
B	$F_{\mathrm{B} 0}=\Theta_{\mathrm{B}} F_{\mathrm{A} 0}$	$-\frac{b}{a} F_{\mathrm{A} 0} X$	$F_{\mathrm{B}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{B}}-\frac{b}{a} X\right)$
C	$F_{\mathrm{C} 0}=\Theta_{\mathrm{C}} F_{\mathrm{A} 0}$	$\frac{c}{a} F_{\mathrm{A} 0} X$	$F_{\mathrm{C}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{C}}+\frac{c}{a} X\right)$
D	$F_{\mathrm{D} 0}=\Theta_{\mathrm{D}} F_{\mathrm{A} 0}$	$\frac{d}{a} F_{\mathrm{A} 0} X$	$F_{\mathrm{D}}=F_{\mathrm{A} 0}\left(\Theta_{\mathrm{D}}+\frac{d}{a} X\right)$
I	$F_{\mathrm{I} 0}=\Theta_{\mathrm{I}} F_{\mathrm{A} 0}$	-	$F_{\mathrm{I}}=F_{\mathrm{A} 0} \Theta_{\mathrm{I}}$
	$F_{T 0}$		$F_{T}=F_{T 0}+\left(\frac{d}{a}+\frac{c}{a}-\frac{b}{a}-1\right) F_{\mathrm{A} 0} X$
			$F_{T}=F_{T 0}+\delta F_{\mathrm{A} 0} X$

Flow system: column 5 (concentration)

$$
\begin{aligned}
& C_{\mathrm{A}}=\frac{F_{\mathrm{A}}}{v}=\frac{F_{\mathrm{A} 0}(1-X)}{v}=\frac{F_{\mathrm{A} 0}(1-X)}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \\
& C_{\mathrm{B}}=\frac{F_{\mathrm{B}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{B}}-(b / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{B}}-(b / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}=C_{\mathrm{A} 0}\left(\frac{1-X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{\mathrm{C}}=\frac{F_{\mathrm{C}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{C}}+(c / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{C}}+(c / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}=C_{\mathrm{A} 0}\left(\frac{\Theta_{\mathrm{C}}+(c / a) X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{\mathrm{D}}=\frac{F_{\mathrm{D}}}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{D}}+(d / a) X\right]}{v}=\frac{F_{\mathrm{A} 0}\left[\Theta_{\mathrm{D}}+(d / a) X\right]}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \\
&=C_{\mathrm{A} 0}\left(\frac{\Theta_{\mathrm{D}}+(d / a) X}{1+\varepsilon X}\right) \frac{T_{0}}{T}\left(\frac{P}{P_{0}}\right) \\
& C_{1}=\frac{F_{1}}{v}=\frac{F_{\mathrm{A} 0} \Theta_{1}}{v}=\frac{F_{\mathrm{A} 0} \Theta_{1}}{v_{0}(1+\varepsilon X)}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}} \quad=\frac{C_{\mathrm{A} 0} \Theta_{\mathrm{I}}}{1+\varepsilon X}\left(\frac{T_{0}}{T}\right) \frac{P}{P_{0}}
\end{aligned}
$$

(Derived in the previous class)

Example

A mixture of $28 \% \mathrm{SO}_{2}$ and air, 72% are added into a flow reactor at $P_{0}=1485 \mathrm{kPa}$ and $T_{0}=500 \mathrm{~K}$

$$
\begin{aligned}
2 \mathrm{SO}_{2}+\mathrm{O}_{2} & \leftrightharpoons 2 \mathrm{SO}_{3} \\
A+\frac{1}{2} B & \leftrightharpoons C
\end{aligned}
$$

The reaction takes place isothermally, and with no pressure drop. Express the outlet concentrations of ALL species as a function of conversion, X, only.

Use the table provided to lay out your answer.

Where we left off ...

Assuming isothermal behaviour, and no pressure drop Species Concentrations

$$
\begin{array}{l|ll}
\mathbf{A}=\mathrm{SO}_{2} & C_{A}=C_{A 0}\left(\frac{1-X}{1+\epsilon X}\right) & \begin{array}{l}
\text { Unknowns } \\
C_{A} 0
\end{array} \\
\mathbf{B}=\mathrm{O}_{2} & \begin{array}{l}
\epsilon \\
C_{B}=C_{A 0}\left(\frac{\Theta_{B}-\frac{1}{2} X}{1+\epsilon X}\right) \\
\\
\mathbf{C}=\mathrm{SO}_{2} \\
C_{C}=C_{A 0}\left(\frac{\Theta_{C}+\frac{1}{1} X}{1+\epsilon X}\right) \\
\Theta_{C} \\
\Theta_{l}
\end{array} \\
\begin{array}{ll}
\Theta_{1}=\mathrm{N}_{2} & C_{l}=C_{A 0}\left(\frac{\Theta_{l}}{1+\epsilon X}\right)
\end{array}
\end{array}
$$

Concentration profile with conversion

