Introduction to Reactor Design, 3K4 Written midterm, 13 February 2013

Kevin Dunn, kevin.dunn@mcmaster.ca

McMaster University

Note:

- You may bring in any printed materials to the midterm; any textbooks, any papers, etc.
- You may use any calculator during the midterm.
- You may answer the questions in any order on all pages of the answer booklet.
- *Time saving tip*: please **use bullet points** to answer, where appropriate, and **never repeat the question** back in your answer.
- Please note, parts of this exam will require you to apply concepts you have learned in your other core courses, such as 2D, 2F and 3E.
- Use the problem solving strategy we discussed in class: Define, Explore, Plan, Do It, Check, Generalize.
- Also, apply the strategy where you work symbolically, and only substitute in values at the end.
- Total marks: 60 marks.
- Total time: 2 hours. There are 3 pages on the exam, please ensure your copy is complete.

Question 1 [10 = 2 + 2 + 2 + 2 + 2]

Provide single word, or single short sentence answers to each of the following (no lengthy explanations, preferably no equations).

- 1. Give an example of a chemical reaction which has $\delta > 0$, where δ is the scalar value that measures by how much the system expands or contracts. Be sure to also supply the value of δ for your example.
- 2. Which of the following assumptions are required to derive the plug-flow design equation $V = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A}$ from the general mol balance [just write the letter numbers down in your answer book]:
 - (a) the system operates at steady state
 - (b) the rate of reaction must be constant
 - (c) the reactor is well-mixed in the axial direction
 - (d) there must be no pressure drop in the axial direction
 - (e) the concentration of A in the centre-line of the reactor is the same as at the wall (also implies there is no boundary layer)
 - (f) the reactor must have the same diameter all the way from start to end to maintain constant volumetric flow

- 3. A first order reaction, $-r_A = k_A C_A$ is taking place in a batch reactor. If:
 - (a) $k_A = 2 \times 10^{-4} \text{ hour}^{-1}$, the reaction can be considered to be _____ (rate / equilibrium) limited.
 - (b) $k_A = 2 \times 10^{+4} \text{ hour}^{-1}$, the reaction can be considered to be _____ (rate / equilibrium) limited.
- 4. In general, a liquid-phase CSTR operated at higher flow rates in and out will have ______ (lower / higher) conversion of the reagent, and will have a ______ (longer / shorter) residence time of material in the reactor.
- 5. If 3 CSTRs are placed in series, and a second order reaction takes place, with the requirement that each CSTR has the same amount of incremental conversion (e.g. 20% conversion per reactor), then the **last reactor** will be _____ (larger / smaller) in volume than the first reactor, and will have _____ (greater / smaller) reaction rate than the first reactor.

Question 2 [5]

The general mol balance (In - Out + Generation = Accumulation) over a boundary can be written symbolically as:

$$F_{j0} - F_j + \int^V r_j dV = \frac{dN_j}{dt}$$

Start from this *differential* equation and end up showing that the performance equation for a CSTR is the *algebraic* equation:

$$V = \frac{F_{j0} - F_j}{-r_j}$$

Of most importance in your answer is to *show exactly how each assumption applies* in the logical progression from the starting equation to this final equation.

Question 3 [3]

Describe why the constants in a rate expression, for example, the k_A and α constants in the expression $-r_A = k_A C_A^{\alpha}$, can be most conveniently evaluated in a batch reactor. Use bullet points! (no need to show how to calculate k_A and α).

Question 4 [12]

For the liquid phase reaction $A \rightarrow D$, with second-order kinetics and $C_{A0} = 1 \text{ mol.L}^{-1}$, we get 35% conversion after 1 hour in a batch reactor. What is the conversion and concentration of A after 1 hour if our raw material has a concentration of 5 mol.L^{-1} instead? Explain why your answer makes sense.

Question 5 [8]

At 600 K the gas-phase reaction

$$C_2H_4 + Br_2 \stackrel{k_1}{\underset{k_2}{\leftarrow}} C_2H_4Br_2$$

follows elementary kinetics with rate constants $k_1 = 500 \text{ L.mol}^{-1}$.hour⁻¹ and $k_2 = 0.032 \text{ hour}^{-1}$.

Determine an equation whose solution would yield the equilibrium conversion in a constant volume batch reactor. **Note**, the equation should contain conversion as an unknown variable. Equimolar amounts of C_2H_4 and Br_2 may be assumed to be present initially. Use appropriate symbols for any quantities that cannot be determined from the given information; numerical values for all other quantities should be inserted.

Question 6 [22]

The following gas phase reaction take place in a packed-bed reactor under isothermal conditions:

 $2\mathbf{A} \longrightarrow \mathbf{B} + 3\mathbf{C}$

where $-r'_A = kC_A^2$ and $k = 0.6 \text{ L}^2 \text{.mol}^{-1} \text{.min}^{-1} (.\text{g catalyst})^{-1}$. The reactor operates at a temperature of 400K. The reactor is fed with an equimolar amount of A and an inert gas, I, at an inlet volumetric flow rate of $q_0 = 10 \text{ L.minute}^{-1}$. The inlet pressure is 200 kPa, and the gas density at these inlet conditions is 7 kg.m⁻³, with viscosity of 3×10^{-5} Pa.s.

Additional information that is already known to you is that the reaction will be in a pipe of inside diameter of 5cm and length of 120 m. The catalyst can be packed leaving a void fraction of 0.5; the catalyst pellets are supplied as spheres with diameter of 0.5 cm (the volume of a sphere is $\frac{4}{3}\pi r^3$); and the density of the catalyst is $2000 \frac{\text{kg}}{\text{m}^3 \text{ of pellet}}$.

Show all steps necessary that result in the set of 2 differential equations that can be solved, using computer software. The equations must be specified as the right hand side of:

$$\frac{dX}{dW} = \dots$$

$$\frac{dy}{dW} = \dots$$

$$X(W = 0) = \dots$$

$$y(W = 0) = \dots$$

The equations should be integrated from zero to $W = ___$ kg

where X is the conversion of species A, $y = \frac{P}{P_0}$ and the catalyst weight is W.

All constants in your expressions should be evaluated and given *numerically*. Only the variables X, y and W should remain in your ODEs.

The end.