Introduction to Reactor Design, 3K4

Multiple reactions in a PFR: the algorithm to set up the equations

Example

Formaldehyde, HCHO, decomposes to formic acid, HCOOH, on a catalyst.

1	$\text{HCHO} + \frac{1}{2}\text{O}_2 \xrightarrow{k_1} \text{HCOOH}$
2	2HCHO $\xrightarrow{k_2}$ HCOOCH ₃
3	$HCOOH \xrightarrow{k_3} CO + H_2O$
4	$\text{HCOOCH}_3 + \text{H}_2\text{O} \xrightarrow{k_4} \text{CH}_3\text{OH} + \text{HCOOH}$
1	$A + \frac{1}{2}B \xrightarrow{k_1} C$
2	$2A \xrightarrow{k_2} D$
3	$C \xrightarrow{k_3} E + W$
4	$\mathrm{D}+\mathrm{W} \xrightarrow{k_4} \mathrm{G}+\mathrm{C}$

 $F_{A0} = 10 \text{ mol.s}^{-1}, F_{B0} = 5 \text{ mol.s}^{-1}, q_0 = 100 \text{ L.s}^{-1}, W = 1000 \text{ kg and } C_{T0} = 1.0 \text{ mol.L}^{-1}$ At 300K, we are given $k_1 = 0.014 \frac{\text{L}^{0.5}}{\text{mol}^{0.5}\text{s}}; k_2 = 0.007 \text{ L.mol}^{-1}.\text{s}^{-1}; k_3 = 0.014 \text{s}^{-1}; \text{ and that } k_4 = 0.45 \text{ L.mol}^{-1}.\text{s}^{-1}$. Initially consider no effects due to pressure drop.

AIM:

- 1. Plot the profiles along the reactor of the gas concentrations.
- 2. Plot the profiles along the reactor of yield of HCOOH and selectivity of HCOOH with respect to CO and methyl formate, HCOOCH₃.
- 3. What will happen to yield and selectivity if we increase the oxygen to formaldehyde feed ratio?
- 4. Take pressure drop effects into account, using $\alpha = 0.002 \,\mathrm{L}^{-1}$. How do these profiles change now?