Difference between revisions of "Steady-state nonisothermal reactor design - 2013"

From Introduction to Reactor Design: 3K4
Jump to navigation Jump to search
m
m
Line 129: Line 129:
for i = 1:numel(X)
for i = 1:numel(X)
     [rA_over_FA0(i), C_A(i)] = pfr_example([], X(i), param);
     [rA_over_FA0(i), C_A(i)] = pfr_example([], X(i), param);
end
end % the above can be done more efficiently in a single line, but the code would be too confusing


% Plot the results
% Plot the results

Revision as of 18:36, 21 March 2013

Class date(s): 18 March
Download video: Link (plays in Google Chrome) [399 M]

Download video: Link (plays in Google Chrome) [266 M]

Textbook references

  • F2011: Chapter 11 and 12
  • F2006: Chapter 8

Suggested problems

Will be posted soon

Class materials

Source code

Example on 21 March (class 10C)

pfr_example.m

function [d_depnt__d_indep, CA] = pfr_example(indep, depnt, param)
 
% Dynamic balance for the reactor
% 
%    indep: the independent ODE variable, such as time or length
%    depnt: a vector of dependent variables
%    Returns d(depnt)/d(indep) = a vector of ODEs
 
% Assign some variables for convenience of notation
X = depnt(1);

% Constants. Make sure to use SI for consistency
FT0 = 163000/3600;% mol/s (was kmol/hour originally)
FA0 = 0.9 * FT0;  % mol/s
T1 = 360;         % K
T2 = 333;         % K
E = 65700;        % J/mol
R = 8.314;        % J/(mol.K)
HR = -6900;       % J/(mol of n-butane)
CA0 = 9300;       % mol/m^3
k_1 = 31.1/3600;  % 1/s (was 1/hr originally)
K_Cbase = 3.03;   % [-]

% Equations
T = 43.3*X + param.T_0;  % derived in class, from the heat balance
k1 = k_1 * exp(E/R*(1/T1 - 1/T)); % temperature dependent rate constant
KC = K_Cbase * exp(HR/R*(1/T2 - 1/T)); % temperature dependent equilibrium constant
k1R = k1 / KC; % reverse reaction rate constant
CA = CA0 * (1 - X); % from the stoichiometry (differs from Fogler, but we get same result)
CB = CA0 * (0 + X);
r1A = -k1 * CA; % rate expressions derived in class 
r1B = -r1A;
r2B = -k1R * CB;
r2A = -r2B;
rA = r1A + r2A; % total reaction rate for species A

n = numel(depnt);
d_depnt__d_indep = zeros(n,1);
d_depnt__d_indep(1) = -rA / FA0;

driver.m

% Integrate the ODE
% -----------------
 
% The independent variable always requires an initial and final value:
indep_start = 0.0;  % m^3
indep_final = 5.0; % m^3
 
% Set initial condition(s): for integrating variables (dependent variables)
X_depnt_zero = 0.0;   % i.e. X(V=0) = 0.0

% Other parameters
param.T_0 = 330;      % feed temperature [K]

% Integrate the ODE(s):
[indep, depnt] = ode45(@pfr_example, [indep_start, indep_final], [X_depnt_zero], optimset(), param);

% Deal with the integrated output to show interesting plots
X = depnt(:,1);
T = 43.3.*X + param.T_0;          % what was the temperature profile?
rA_over_FA0 = zeros(numel(X), 1); % what was the rate profile?
C_A = zeros(numel(X), 1);         % what was the concentration profile?
for i = 1:numel(X)
    [rA_over_FA0(i), C_A(i)] = pfr_example([], X(i), param);
end % the above can be done more efficiently in a single line, but the code would be too confusing

% Plot the results
f=figure;
set(f, 'Color', [1,1,1])
subplot(2, 2, 1)
plot(indep, X); grid
xlabel('Volume, V [kg]', 'FontWeight', 'bold')
ylabel('Conversion, X [-]', 'FontWeight', 'bold')

subplot(2, 2, 2)
plot(indep, T); grid
xlabel('Volume, V [kg]', 'FontWeight', 'bold')
ylabel('Temperature profile [K]', 'FontWeight', 'bold')

subplot(2, 2, 3)
plot(indep, C_A); grid
xlabel('Volume, V [kg]', 'FontWeight', 'bold')
ylabel('Concentration C_A profile [K]', 'FontWeight', 'bold')

subplot(2, 2, 4)
plot(indep, rA_over_FA0); grid
xlabel('Volume, V [kg]', 'FontWeight', 'bold')
ylabel('(Reaction rate/FA0) profile [1/m^3]', 'FontWeight', 'bold')