Recall, for least squares models we had decided to mean center the data:

$$
\begin{aligned}
y_{i} & =b_{0}+b_{1} x_{i} \\
\bar{y} & =b_{0}+b_{1} \bar{x} \\
y_{i}-\bar{y} & =0+b_{1}\left(x_{i}-\bar{x}\right) \quad \text { by subtracting previous lines }
\end{aligned}
$$

- Let $x=x_{\text {raw }}-\operatorname{mean}\left(x_{\text {raw }}\right)$
- Let $y=y_{\text {raw }}-\operatorname{mean}\left(y_{\text {raw }}\right)$
- The model is still the same, except intercept term is forced to zero: $b_{0}=0$

Use the following data:

- $x_{1, \text { raw }}=[1,3,6,8,11,13]$, given that mean $\left(x_{1}\right)=7$
- $x_{2 \text {,raw }}=[13,12,11,8,7,3]$, given that mean $\left(x_{2}\right)=9$
- $y_{\text {raw }}=[29,28,29,18,19,3]$, given that mean $(y)=21$

1. Show that the centered vector for $x_{1}=[-6,-4,-1,1,4,6]$.
2. Show that the centered vector for $x_{2}=[4,3,2,-1,-2,-6]$.
3. Show that the centered vector for $y=[8,7,8,-3,-2,-18]$.
4. Plot a rough sketch of x_{1} vs x_{2} (use the centered data)
5. Plot a rough sketch of x_{1} vs y (use the centered data)
6. Plot a rough sketch of x_{2} vs y (use the centered data)
\square
7. What is your conclusion regarding the relationship of x_{1}, x_{2} and y, using the plots? In the next few questions, match your plots to the numeric values:
8. Calculate $x_{1}^{T} x_{1}=$
9. Calculate $x_{1}^{T} x_{2}=$
10. Calculate $x_{2}^{T} x_{2}=$
11. Calculate $x_{1}^{T} y=$
12. Calculate $x_{2}^{T} y=$
13. Now form the matrix and vector

$$
\mathbf{X}=\left[\begin{array}{cc}
-6 & 4 \\
-4 & 3 \\
-1 & 2 \\
1 & -1 \\
4 & -2 \\
6 & -6
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
8 \\
7 \\
8 \\
-3 \\
-2 \\
-18
\end{array}\right]
$$

and use your answers to the prior questions to calculate:

$$
\mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right] \quad \mathbf{X}^{T} \mathbf{y}=[-]
$$

14. Calculate the result of $\mathbf{b}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$
15. Compare the signs of $\mathbf{X}^{T} \mathbf{y}$ to the entries in \mathbf{b}.
16. Compare the result to the following R command: $\operatorname{lm}(y \sim x 1+x 2)$, where $x 1, x 2$ and y are the vectors above, e.g. $x 1<-c(1,3,6,8,11,13)$.
