Difference between revisions of "Visualizing process data"
Jump to navigation
Jump to search
Kevin Dunn (talk | contribs) (Created page with "__NOTOC__ {{ClassSidebar | date = 2015 | dates_alt_text = | vimeoID1 = 83723241 | vimeoID2 = 83855005 | course_notes_PDF = 2014-4C3-6C3-Visualizing-data.pdf | course_notes_al...") |
Kevin Dunn (talk | contribs) |
||
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<div class="noautonum">__TOC__</div> | |||
== Learning outcomes == | |||
| | * Understand when it is appropriate to use scatter plots, bar plots, pie charts (hint: [http://www.perceptualedge.com/articles/08-21-07.pdf almost never]), and even tables. | ||
| | * Learn an interesting, potentially new plot: the box plot, to summarize and compare data. | ||
| | * How to effectively visualize up to 5 dimensions on a 2-D plot, as shown in a video by Hans Rosling. | ||
| | * Know the meaning of words like sparklines, data density, and chart junk. | ||
| | |||
| | == Resources == | ||
| | |||
| | * [[Image:Nuvola_mimetypes_pdf.png|20px|link=Media:2015-4C3-6C3-Data-visualization.pdf]] [[Media:2015-4C3-6C3-Data-visualization.pdf | Class notes 2015]] | ||
* [[Image:Nuvola_mimetypes_pdf.png|20px|link=Media:2014-4C3-6C3-Visualizing-data.pdf]] [[Media:2014-4C3-6C3-Visualizing-data.pdf | Class notes 2014]] | |||
| | * [http://learnche.org/pid/data-visualization/index Textbook, chapter 1] | ||
* Check your knowledge with these quizzes: | |||
** [[Media:Viz-quiz-01.pdf|Quiz 1]] and [[Media:Viz-quiz-01-solution.pdf|Solution 1]] | |||
| | ** [[Media:Viz-quiz-02.pdf|Quiz 2]] and [[Media:Viz-quiz-02-solution.pdf|Solution 2]] | ||
| | ** [https://docs.google.com/document/d/1rZXJY7aybeng7H_ZngzHDsbBxn-uipvRPF6r9JdH-9g Quiz 3] and [https://docs.google.com/document/d/1ew6UwKP8SBM19jvdYfMxgSnRVIvUNuwnOSNlJoZ3Tg4 Solution 3] | ||
* Complete steps 1, 2 ... 9 of the [[Software_tutorial| software tutorial]] | |||
== Extended readings == | |||
* [http://en.wikipedia.org/wiki/Sankey_diagram Sankey diagrams] for example, would make a great way to show energy utilization in your company, or even a mass balance superimposed on a flowsheet. Here's a [http://bost.ocks.org/mike/sankey/ great example applied to the UK energy supply and demand]. | |||
* [http://vita.had.co.nz/papers/boxplots.pdf 40 years of boxplots] | |||
* Why you should [http://www.perceptualedge.com/articles/08-21-07.pdf never have to use pie charts], an article by Stephen Few. | |||
* This is one video you must watch for the course: [https://www.youtube.com/watch?v=jbkSRLYSojo Hans Rosling shows an incredible data visualization] | |||
== Class videos from prior years == | |||
===Videos from 2015=== | |||
{{VideoBox | |||
|ytid = aU6eZuiG8ck | |||
|timing=07:31 | |||
|shortcut=vis-01 | |||
}} | }} | ||
{{VideoBox | |||
|ytid = tb20hIQlEBU | |||
|timing=03:16 | |||
|shortcut=vis-02 | |||
}} | |||
{{VideoBox | |||
|ytid = LumUy2F_DRc | |||
|timing=04:51 | |||
|shortcut=vis-03 | |||
}} | |||
{{VideoBox | |||
|ytid = JB8UP1JWNXQ | |||
|timing=07:23 | |||
|shortcut=vis-04 | |||
}} | |||
===Videos from 2014=== | |||
{{#widget:YouTube|id=ZDGhrLsprkU}} | |||
{{#widget:YouTube|id=ervdpbipMjE}} | |||
===Videos from 2013=== | |||
{{#widget:YouTube|id=FHt6fgwbT_c}} | |||
{{#widget:YouTube|id=E7LM9fqY1cI}} | |||
== Software codes for this section == | |||
=== Code to show how to superimpose plots === | |||
[http://www.r-fiddle.org/#/fiddle?id=19PyJkpa&version=1 Run this code in a web-browser] | |||
<html><div data-datacamp-exercise data-lang="r"> | |||
<code data-type="sample-code"> | |||
# Run this code line-by-line (copy & paste) to understand the demonstration | |||
f <- 'http://openmv.net/file/raw-material-properties.csv' | |||
data <- read.csv(f) | |||
summary(data) | |||
# Single plot | |||
plot(data$density1) | |||
# Connect the dots | |||
plot(data$density1, type='b') | |||
# Another variable | |||
plot(data$density2, type='b', col="red") | |||
# Superimpose them? | |||
plot(data$density1, type='b', col="blue") | |||
# Where's density2 ? | |||
lines(data$density2, type='b', col="red") | |||
# Superimpose them: limits | |||
plot(data$density1, | |||
type='b', | |||
col="blue", | |||
ylim=c(10, 45)) | |||
# Now density2 shows up | |||
lines(data$density2, | |||
type='b', | |||
col="red") | |||
</code> | |||
</div></html> | |||
Latest revision as of 19:11, 14 January 2019
Learning outcomes
- Understand when it is appropriate to use scatter plots, bar plots, pie charts (hint: almost never), and even tables.
- Learn an interesting, potentially new plot: the box plot, to summarize and compare data.
- How to effectively visualize up to 5 dimensions on a 2-D plot, as shown in a video by Hans Rosling.
- Know the meaning of words like sparklines, data density, and chart junk.
Resources
- Class notes 2015
- Class notes 2014
- Textbook, chapter 1
- Check your knowledge with these quizzes:
- Quiz 1 and Solution 1
- Quiz 2 and Solution 2
- Quiz 3 and Solution 3
- Complete steps 1, 2 ... 9 of the software tutorial
Extended readings
- Sankey diagrams for example, would make a great way to show energy utilization in your company, or even a mass balance superimposed on a flowsheet. Here's a great example applied to the UK energy supply and demand.
- 40 years of boxplots
- Why you should never have to use pie charts, an article by Stephen Few.
- This is one video you must watch for the course: Hans Rosling shows an incredible data visualization
Class videos from prior years
Videos from 2015
07:31 | Download video | Download captions | Script |
03:16 | Download video | Download captions | Script |
04:51 | Download video | Download captions | Script |
07:23 | Download video | Download captions | Script |
Videos from 2014
Videos from 2013
Software codes for this section
Code to show how to superimpose plots
Run this code in a web-browser
# Run this code line-by-line (copy & paste) to understand the demonstration
f <- 'http://openmv.net/file/raw-material-properties.csv'
data <- read.csv(f)
summary(data)
# Single plot
plot(data$density1)
# Connect the dots
plot(data$density1, type='b')
# Another variable
plot(data$density2, type='b', col="red")
# Superimpose them?
plot(data$density1, type='b', col="blue")
# Where's density2 ?
lines(data$density2, type='b', col="red")
# Superimpose them: limits
plot(data$density1,
type='b',
col="blue",
ylim=c(10, 45))
# Now density2 shows up
lines(data$density2,
type='b',
col="red")