Difference between revisions of "Latent variable methods and applications (2012)"

From Statistics for Engineering
Jump to navigation Jump to search
Line 48: Line 48:
We get very different models for very small changes in the raw data when our variables are strongly correlated.
We get very different models for very small changes in the raw data when our variables are strongly correlated.


<syntaxhighlight lang="R">
<html><div data-datacamp-exercise data-lang="r" data-height="auto">
    <code data-type="sample-code">
# Create data with strongly correlated X's
# Create data with strongly correlated X's
set.seed(0)
set.seed(0)
Line 67: Line 68:
# Change one of the entries in x1: before
# Change one of the entries in x1: before
# ----------------------------------------
# ----------------------------------------
#  [1]  1.262954285 -0.326233361  1.329799263  1.272429321  0.414641434
#  [1]  1.262954285 -0.326233361  1.329799263
#  [6] -1.539950042 -0.928567035 -0.294720447 -0.005767173  2.404653389
#  [4] 1.272429321  0.414641434 -1.539950042
#  [7] -0.928567035 -0.294720447 -0.005767173  2.404653389


x1[1] = 1.25
x1[1] = 1.25
# After:
# After: notice by how little we changed it!
# ------
# ------
# [1]  1.250000000 -0.326233361  1.329799263  1.272429321  0.414641434
# [1]  1.250000000 -0.326233361  1.329799263
# [6] -1.539950042 -0.928567035 -0.294720447 -0.005767173  2.404653389
# [4] 1.272429321  0.414641434 -1.539950042
 
# [7] -0.928567035 -0.294720447 -0.005767173  2.404653389


mod.updated <- lm(y ~ x1 + x2 + x3)
mod.updated <- lm(y ~ x1 + x2 + x3)
Line 85: Line 87:
#    0.01978      0.51850      5.23192    -5.00882
#    0.01978      0.51850      5.23192    -5.00882


# The coefficient for x1 has flipped sign;
# The coefficient for x1 has flipped sign!
# Confirming that least squares is unstable with
# highly correlated data.
# R2 is 1.0 in both cases!
# R2 is 1.0 in both cases!
# S_E = 0.03323 in both cases!
# S_E = 0.03323 in both cases!
</syntaxhighlight>
    </code>
</div></html>


== Code for the rotating cube ==
== Code for the rotating cube ==

Revision as of 21:03, 14 January 2019

Class date(s): 29 March 2012

Course notes

This section will be briefly covered in class on 29 March 2012. Only the basic concepts will be covered.

  • Course notes. Please read the start of Chapter 6 for an overview. The rest of the chapter will not be covered in this course.


Projector overheads

A high-level overview of latent variable methods


Code that shows least squares failing

We get very different models for very small changes in the raw data when our variables are strongly correlated.

# Create data with strongly correlated X's set.seed(0) x1 <- rnorm(10) x2 <- x1 * 2 + rnorm(10, sd=0.01) x3 <- rnorm(10) y <- 3*x1 + 4*x2 - 5*x3 + rnorm(10, sd=0.05) plot(data.frame(x1, x2, x3, y)) mod.corr <- lm(y ~ x1 + x2 + x3) summary(mod.corr) confint(mod.corr) # Coefficients: # (Intercept) x1 x2 x3 # 0.02144 -0.95069 5.96684 -5.00735 # Change one of the entries in x1: before # ---------------------------------------- # [1] 1.262954285 -0.326233361 1.329799263 # [4] 1.272429321 0.414641434 -1.539950042 # [7] -0.928567035 -0.294720447 -0.005767173 2.404653389 x1[1] = 1.25 # After: notice by how little we changed it! # ------ # [1] 1.250000000 -0.326233361 1.329799263 # [4] 1.272429321 0.414641434 -1.539950042 # [7] -0.928567035 -0.294720447 -0.005767173 2.404653389 mod.updated <- lm(y ~ x1 + x2 + x3) summary(mod.updated) confint(mod.updated) # Coefficients: # (Intercept) x1 x2 x3 # 0.01978 0.51850 5.23192 -5.00882 # The coefficient for x1 has flipped sign! # Confirming that least squares is unstable with # highly correlated data. # R2 is 1.0 in both cases! # S_E = 0.03323 in both cases!

Code for the rotating cube

Created using R with this code, then converted to a video file using http://ffmpeg.org/

temps<- read.csv('http://openmv.net/file/room-temperature.csv')
summary(temps)
X <- data.frame(x1=temps$FrontLeft, x2=temps$FrontRight, x3=temps$BackLeft)

# To colour-code sub-groups of outliers
library(lattice)
grouper = c(numeric(length=50)+1, numeric(length=10)+2, numeric(length=144-50-10)+1)
grouper[131] = 3

cube <- function(angle){
    # Function to draw the cube at a certain viewing ``angle``
    xlabels = 0
    ylabels = 0
    zlabels = 0
    lattice.options(panel.error=NULL) 
    print(cloud(
                 X$x3 ~ X$x1 * X$x2,
                 cex = 1, 
                 type="p",
                 groups = grouper,
                 pch=20,
                 col=c("black", "blue", "blue"),   
                 main="",
                 screen = list(z = angle, x = -70, y = 0),        
                 par.settings = list(axis.line = list(col = "transparent")), 
                 scales = list(
                     col = "black", arrows=TRUE,
                     distance=c(0.5,0.5,0.5)
                 ),
                 xlab="x1",
                 ylab="x2",
                 zlab="x3",
                 zoom = 1.0
             )
        )  
}

angles = seq(0, 360, 1)
for(i in angles){
    
    if (i<10) {
        filename <- paste("00", as.character(i), ".jpg", sep="")
    } else if (i<100) {
        filename <- paste("0", as.character(i), ".jpg", sep="")
    } else {
        filename <- paste("", as.character(i), ".jpg", sep="")
    }
        
    jpeg(file=filename, height = 1000, width = 1000, quality=100, res=300)
    cube(i)
    dev.off()
}

# Install "ffmpeg" to stitch the JPG files into an animation
system("ffmpeg -r 20 -b 1800 -i %03d.jpg animated-spinning-cube.mp4")