Difference between revisions of "Univariate data analysis (2014)"

From Statistics for Engineering
Jump to navigation Jump to search
Line 75: Line 75:


Please follow the [[Software_tutorial|software tutorial]] to install and run the course software. You should be able to quickly read, understand and use the material in steps 1 to 13.
Please follow the [[Software_tutorial|software tutorial]] to install and run the course software. You should be able to quickly read, understand and use the material in steps 1 to 13.
== Class example, 15 Jan ==
Seeing the Central Limit Theorem in action: ''rolling dice''.
<syntaxhighlight lang="rsplus">
N = 500
m <- t(matrix(seq(1,6), 3, 2))
layout(m)
s1 <- as.integer(runif(N, 1, 7))
s2 <- as.integer(runif(N, 1, 7))
s3 <- as.integer(runif(N, 1, 7))
s4 <- as.integer(runif(N, 1, 7))
s5 <- as.integer(runif(N, 1, 7))
s6 <- as.integer(runif(N, 1, 7))
s7 <- as.integer(runif(N, 1, 7))
s8 <- as.integer(runif(N, 1, 7))
s9 <- as.integer(runif(N, 1, 7))
s10 <- as.integer(runif(N, 1, 7))
hist(s1, main="", xlab="One throw", breaks=seq(0,6)+0.5)
bins = 8
hist((s1+s2)/2, breaks=bins, main="", xlab="Average of two throws")
hist((s1+s2+s3+s4)/4, breaks=bins, main="", xlab="Average of 4 throws")
hist((s1+s2+s3+s4+s5+s6)/6, breaks=bins, main="", xlab="Average of 6 throws")
bins=12
hist((s1+s2+s3+s4+s5+s6+s7+s8)/8,  breaks=bins, main="", xlab="Average of 8 throws")
hist((s1+s2+s3+s4+s5+s6+s7+s8+s9+s10)/10, breaks=bins, main="", xlab="Average of 10 throws")
</syntaxhighlight>


<!-- Here was the example used in class:
<!-- Here was the example used in class:

Revision as of 17:17, 16 January 2014

Class date(s): 13 to 23 January 2014
Nuvola mimetypes pdf.png (PDF) Course slides
Download video: Link (plays in Google Chrome) [343 M]

Download video: Link (plays in Google Chrome) [M]

Class materials

Date Class number Video and audio files Other materials Reading (PID) Slides
13 January 02A Video (343 M) Audio (42 M) R demo file Chapter 2 Nuvola mimetypes pdf.png Slides for class
15 January 02B Video (327 M) Audio (42 M) None
16 January 02C None

Software source code

Please follow the software tutorial to install and run the course software. You should be able to quickly read, understand and use the material in steps 1 to 13.

Class example, 15 Jan

Seeing the Central Limit Theorem in action: rolling dice.

N = 500
m <- t(matrix(seq(1,6), 3, 2))
layout(m)
s1 <- as.integer(runif(N, 1, 7))
s2 <- as.integer(runif(N, 1, 7))
s3 <- as.integer(runif(N, 1, 7))
s4 <- as.integer(runif(N, 1, 7))
s5 <- as.integer(runif(N, 1, 7))
s6 <- as.integer(runif(N, 1, 7))
s7 <- as.integer(runif(N, 1, 7))
s8 <- as.integer(runif(N, 1, 7))
s9 <- as.integer(runif(N, 1, 7))
s10 <- as.integer(runif(N, 1, 7))

hist(s1, main="", xlab="One throw", breaks=seq(0,6)+0.5)
bins = 8
hist((s1+s2)/2, breaks=bins, main="", xlab="Average of two throws")
hist((s1+s2+s3+s4)/4, breaks=bins, main="", xlab="Average of 4 throws")
hist((s1+s2+s3+s4+s5+s6)/6, breaks=bins, main="", xlab="Average of 6 throws")
bins=12
hist((s1+s2+s3+s4+s5+s6+s7+s8)/8,  breaks=bins, main="", xlab="Average of 8 throws")
hist((s1+s2+s3+s4+s5+s6+s7+s8+s9+s10)/10, breaks=bins, main="", xlab="Average of 10 throws")