Univariate data analysis

From Statistics for Engineering
Revision as of 19:24, 2 January 2016 by Kevin Dunn (talk | contribs)
Jump to navigation Jump to search

Learning outcomes

  • The study of variability important to help answer: "what happened?"
  • Univariate tools such as the histogram, median, MAD, standard deviation, quartiles will be reviewed from prior courses (as a refresher)
  • The normal and t-distribution will be important in our work: what are they, how to interpret them, and use tables of these distributions
  • The central limit theorem will be explained conceptually: you cannot finish a course on stats without knowing the key result from this theorem.
  • Using and interpreting confidence intervals will be crucial in all the modules that follow.

Extended readings

  • New Boeing planes will generate 0.5 TB of data per flight. Read about this, and other sources of data: "every piece of that plane has an internet connection, from the engines to the flaps to the landing gear".
  • All students, but especially the 600-level students should read the article by Peter J. Rousseeuw, Tutorial to Robust Statistics it is easy to read, and contains so much useful content.

Resources

Tasks to do first Quiz Solution
Complete steps 10, 11, 12 and 13 of the software tutorial

(also steps 1 through 9)

Quiz Solution
Watch videos 1, 2, 3, 4, and 5 Quiz Solution
Watch videos 6, 7, and 8 Quiz Solution
Watch videos 9 and 10 Quiz Solution
Watch videos 11, 12, and 13 Quiz Solution
Watch videos 14, 15, and 16 Quiz Solution

Class videos from prior years

Videos from 2015

  1. Introduction [05:59]
  2. Histograms [04:50]
  3. Basic terminology [06:41]
  4. Outliers, medians and MAD [04:42]
  5. The central limit theorem [06:56]
  6. The normal distribution, and standardizing variables [05:54]
  7. Normal distribution notation and using tables and R [05:48]
  8. Checking if data are normally distributed [05:57]
  9. Introducing the idea of a confidence interval [covered in class]
  10. Confidence intervals when we don't know the variance [07:59]
  11. Interpreting the confidence interval [07:52]
  12. A worked example: calculating and interpreting the CI [03:37]
  13. A motivating example to see why tests for differences are important [08:29]
  14. The mathematical derivation for a confidence interval for differences [covered in class]
  15. Using the confidence interval to test for differences to solve the motivating example [covered in class]
  16. Confidence intervals for paired tests: theory and an example [11:59]
05:59 | Download video | Download captions | Script
04:50 | Download video | Download captions | Script
06:41 | Download video | Download captions | Script
04:42 | Download video | Download captions | Script
06:56 | Download video | Download captions | Script
05:54 | Download video | Download captions | Script
05:48 | Download video | Download captions | Script
05:57 | Download video | Download captions | Script
Covered in class | No video | Script
07:59 | Download video | Download captions | Script
07:52 | Download video | Download captions | Script
03:37 | Download video | Download captions | Script
08:29 | Download video | Download captions | Script
Audio only | No video | Script
Audio only | No video | Script
11:59 | Download video | Download captions | Script

Videos from 2014

See the webpage from 2014


Videos from 2013

See the webpage from 2013

Software codes for this section

Understanding the central limit theorem with the rolling dice example

Web-based version of the code

N = 500
m <- t(matrix(seq(1,6), 3, 2))
layout(m)
s1 <- as.integer(runif(N, 1, 7))
s2 <- as.integer(runif(N, 1, 7))
s3 <- as.integer(runif(N, 1, 7))
s4 <- as.integer(runif(N, 1, 7))
s5 <- as.integer(runif(N, 1, 7))
s6 <- as.integer(runif(N, 1, 7))
s7 <- as.integer(runif(N, 1, 7))
s8 <- as.integer(runif(N, 1, 7))
s9 <- as.integer(runif(N, 1, 7))
s10 <- as.integer(runif(N, 1, 7))

hist(s1, main="", xlab="One throw", breaks=seq(0,6)+0.5)
bins = 8
hist((s1+s2)/2, breaks=bins, main="", xlab="Average of two throws")
hist((s1+s2+s3+s4)/4, breaks=bins, main="", xlab="Average of 4 throws")
hist((s1+s2+s3+s4+s5+s6)/6, breaks=bins, main="", xlab="Average of 6 throws")
bins=12
hist((s1+s2+s3+s4+s5+s6+s7+s8)/8,  breaks=bins, main="", xlab="Average of 8 throws")
hist((s1+s2+s3+s4+s5+s6+s7+s8+s9+s10)/10, breaks=bins, main="", xlab="Average of 10 throws")