Difference between revisions of "Non-linear programming"
Jump to navigation
Jump to search
Kevin Dunn (talk | contribs) |
Kevin Dunn (talk | contribs) |
||
Line 124: | Line 124: | ||
| align="left" colspan="1"| | | align="left" colspan="1"| | ||
[https://docs.google.com/document/d/1tISkFj7nYa3RV7G8LF4S_nD7dMzb7_ATwY0z4gslDT0 Handout from class] | [https://docs.google.com/document/d/1tISkFj7nYa3RV7G8LF4S_nD7dMzb7_ATwY0z4gslDT0 Handout from class] | ||
| | | | ||
|align="left" colspan="1"| | |align="left" colspan="1"| | ||
Code used in class (see below) | |||
|} | |} | ||
===Taking full Newton's steps to solve the class example=== | |||
<syntaxhighlight lang="matlab"> | |||
clear all; | |||
close all; | |||
clc; | |||
[X1,X2] = meshgrid(-0.5:0.1:6, 0:0.01:9); | |||
Z = func(X1,X2); | |||
contour(X1, X2, Z) | |||
hold on | |||
grid on | |||
x = [1,3]'; | |||
plot(x(1), x(2), 'o') | |||
text(x(1)+0.2, x(2), '0') | |||
for k = 1:10 | |||
slope = -first_deriv(x) | |||
step = hessian(x)\slope; % Solves the Ax=b problem, as x = A\b | |||
x = x + step; | |||
plot(x(1), x(2), '*') | |||
text(x(1)+0.1, x(2), num2str(k)) | |||
end | |||
</syntaxhighlight> | |||
'''<tt>func.m</tt>''' | |||
<syntaxhighlight lang="matlab"> | |||
function y = func(x1,x2) | |||
y = 4.*x1.*x2 - 5.*(x1-2).^4 - 3.*(x2-5).^4; | |||
</syntaxhighlight> | |||
'''<tt>first_deriv.m</tt>''' | |||
<syntaxhighlight lang="matlab"> | |||
function y = first_deriv(x) | |||
y = [4*x(2) - 20*(x(1)-2)^3; | |||
4*x(1) - 12*(x(2)-5)^3]; | |||
</syntaxhighlight> | |||
'''<tt>hessian.m</tt>''' | |||
<syntaxhighlight lang="matlab"> | |||
function y = hessian(x) | |||
y = [-60*(x(1)-2)^2, 4; | |||
4, -36*(x(2)-5)^2]; | |||
</syntaxhighlight> | |||
<!-- | <!-- |
Revision as of 12:06, 5 March 2015
Class date(s): | 04 February 2015 | ||||
| |||||
| |||||
| |||||
| |||||
Resources
Scroll down, if necessary, to see the resources.
Date | Class number | Topic | Slides/handouts for class | Video file | References and Notes |
---|---|---|---|---|---|
04 February | 05A |
|
Video | ||
09 February | 06A |
|
Video | ||
11 February | 06B |
|
Video | ||
16 to 27 February | 07 |
Reading week break and midterm | |||
02 March | 08A |
|
Video | ||
04 March | 08B |
|
Code used in class (see below) |
Taking full Newton's steps to solve the class example
clear all;
close all;
clc;
[X1,X2] = meshgrid(-0.5:0.1:6, 0:0.01:9);
Z = func(X1,X2);
contour(X1, X2, Z)
hold on
grid on
x = [1,3]';
plot(x(1), x(2), 'o')
text(x(1)+0.2, x(2), '0')
for k = 1:10
slope = -first_deriv(x)
step = hessian(x)\slope; % Solves the Ax=b problem, as x = A\b
x = x + step;
plot(x(1), x(2), '*')
text(x(1)+0.1, x(2), num2str(k))
end
func.m
function y = func(x1,x2)
y = 4.*x1.*x2 - 5.*(x1-2).^4 - 3.*(x2-5).^4;
first_deriv.m
function y = first_deriv(x)
y = [4*x(2) - 20*(x(1)-2)^3;
4*x(1) - 12*(x(2)-5)^3];
hessian.m
function y = hessian(x)
y = [-60*(x(1)-2)^2, 4;
4, -36*(x(2)-5)^2];