Difference between revisions of "Non-linear programming"
Jump to navigation
Jump to search
Kevin Dunn (talk | contribs) |
Kevin Dunn (talk | contribs) |
||
Line 19: | Line 19: | ||
| assignment_instructions = | | assignment_instructions = | ||
| assignment_solutions = | | assignment_solutions = | ||
| video_download_link_MP4 = | | video_download_link_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-05A.mp4 | ||
| video_download_link_MP4_size = 433 M | | video_download_link_MP4_size = 433 M | ||
| video_notes1 = | | video_notes1 = | ||
| video_download_link2_MP4 = | | video_download_link2_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-06A.mp4 | ||
| video_download_link2_MP4_size = 797 M | | video_download_link2_MP4_size = 797 M | ||
| video_notes2 = | | video_notes2 = | ||
| video_download_link3_MP4 = | | video_download_link3_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-06B.mp4 | ||
| video_download_link3_MP4_size = 820 M | | video_download_link3_MP4_size = 820 M | ||
| video_notes3 = | | video_notes3 = | ||
| video_download_link4_MP4 = | | video_download_link4_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-08A.mp4 | ||
| video_download_link4_MP4_size = 640 M | | video_download_link4_MP4_size = 640 M | ||
| video_notes4 = | | video_notes4 = | ||
| video_download_link5_MP4 = | | video_download_link5_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-08B.mp4 | ||
| video_download_link5_MP4_size = 923 M | | video_download_link5_MP4_size = 923 M | ||
| video_notes5 = | | video_notes5 = | ||
| video_download_link6_MP4 = | | video_download_link6_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-09A.mp4 | ||
| video_download_link6_MP4_size = 943 M | | video_download_link6_MP4_size = 943 M | ||
| video_notes6 = | | video_notes6 = | ||
| video_download_link7_MP4 = | | video_download_link7_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-09B.mp4 | ||
| video_download_link7_MP4_size = 667 M | | video_download_link7_MP4_size = 667 M | ||
| video_notes7 = | | video_notes7 = | ||
| video_download_link8_MP4 = | | video_download_link8_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-10A.mp4 | ||
| video_download_link8_MP4_size = 948 M | | video_download_link8_MP4_size = 948 M | ||
| video_notes8 = | | video_notes8 = | ||
| video_download_link9_MP4 = | | video_download_link9_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-10B.mp4 | ||
| video_download_link9_MP4_size = 935 M | | video_download_link9_MP4_size = 935 M | ||
| video_notes9 = | | video_notes9 = | ||
| video_download_link10_MP4 = | | video_download_link10_MP4 = http://learnche.mcmaster.ca/media/2015-4G3-Class-11A.mp4 | ||
| video_download_link10_MP4_size = 907 M | | video_download_link10_MP4_size = 907 M | ||
| video_notes10 = | | video_notes10 = |
Revision as of 20:13, 3 January 2017
Class date(s): | 04 February 2015 | ||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
Resources
Scroll down, if necessary, to see the resources.
Date | Class number | Topic | Slides/handouts for class | Video file | References and Notes |
---|---|---|---|---|---|
04 February | 05A |
|
Video | ||
09 February | 06A |
|
Video | ||
11 February | 06B |
|
Video | ||
16 to 27 February | 07 |
Reading week break and midterm | |||
02 March | 08A |
|
Video | ||
04 March | 08B |
|
Video |
Code used in class (see below) | |
09 March | 09A |
|
Video | ||
11 March | 09B |
Guest lecture |
Video | ||
16 March | 10A |
|
Handout from class (continued with handout 09A) |
Video | |
18 March | 10B |
|
Video | ||
23 March | 11A |
|
Video |
Taking full Newton's steps to solve the class example
clear all;
close all;
clc;
[X1,X2] = meshgrid(-0.5:0.1:6, 0:0.01:9);
Z = func(X1,X2);
contour(X1, X2, Z)
hold on
grid on
x = [1,3]';
plot(x(1), x(2), 'o')
text(x(1)+0.2, x(2), '0')
for k = 1:10
slope = -first_deriv(x)
step = hessian(x)\slope; % Solves the Ax=b problem, as x = A\b
x = x + step;
plot(x(1), x(2), '*')
text(x(1)+0.1, x(2), num2str(k))
end
func.m
function y = func(x1,x2)
y = 4.*x1.*x2 - 5.*(x1-2).^4 - 3.*(x2-5).^4;
first_deriv.m
function y = first_deriv(x)
y = [4*x(2) - 20*(x(1)-2)^3;
4*x(1) - 12*(x(2)-5)^3];
hessian.m
function y = hessian(x)
y = [-60*(x(1)-2)^2, 4;
4, -36*(x(2)-5)^2];