Mixed-Integer linear programming
Revision as of 17:17, 31 March 2015 by Kevin Dunn (talk | contribs)
Resources
Scroll down, if necessary, to see the resources.
Date | Class number | Topic | Slides/handouts for class | Video file | References and Notes |
---|---|---|---|---|---|
25 March | 11B |
|
Video |
See the GAMS codes below | |
30 March | 12A |
More problems that can be solved with integer variables
|
Video |
See the GAMS codes below | |
30 March | 12B |
More problems that can be solved with integer variables
Solutions methods of problems with integer variables
|
Solving a basic ILP
free variable income "total income";
positive variables x1, x2;
binary variable delta "use ingredient x3 or not at all";
EQUATIONS
obj "maximize income",
blend "blending constraint";
obj.. income =E= 18*x1 - 3*x2 - 9*(20*delta);
blend.. 2*x1 + x2 + 7*(20*delta) =L= 150;
x1.up = 25;
x2.up = 30;
model recipe /all/;
SOLVE recipe using MIP maximizing income;
Solving the knapsack problem
free variable value "total value";
sets j "item j" /1*5/;
binary variables x(j) "whether to include item in the knapsack";
parameter v(j) "value of object j"
/1 4,
2 2,
3 10,
4 1,
5 2/;
parameter w(j) "weight of object j"
/1 12,
2 1,
3 4,
4 1,
5 2/;
EQUATIONS
obj "maximize value",
weight "weight constraint";
obj.. value =e= sum(j, v(j)*x(j));
weight.. sum(j, w(j)*x(j)) =L= 15;
model knapsack /all/;
solve knapsack using mip maximizing value;
Solving the knapsack problem for selecting amount projects, with constraints
free variable value "total value";
sets j "item j" /1*5/;
binary variables x(j) "whether to include item in the project";
parameter v(j) "value of object j"
/1 50,
2 72,
3 25,
4 41,
5 17/;
parameter w(j) "cost of object j"
/1 8,
2 21,
3 15,
4 10,
5 7/;
EQUATIONS
obj "maximize value",
weight "weight constraint",
me1v2 "1 and 2 are mutually exclusive",
me1v3v5 "1, 3 and 5 are mutually exclusive",
d4v3 "4 depends on 3";
obj.. value =e= sum(j, v(j)*x(j));
weight.. sum(j, w(j)*x(j)) =L= 35;
me1v2.. x('1') + x('2') =L= 1;
me1v3v5.. x('1') + x('3') + x('5') =L= 1;
d4v3.. x('4') =L= x('3');
model projects /all/;
solve projects using mip maximizing value;
Binary problem relaxation
Here is an example of an unusual case, where the binary problem (original) has the same optimum as the relaxed problem (LP). In this case the LP solution happens to be at values of 0 and 1 for the search variables, so this relaxed problem has the same optimum as the binary problem that it relaxed.
Original problem | Relaxed problem |
---|---|
free variable cost "total cost";
sets j "item j" /1*4/;
binary variables x(j) "whether to include item in the purchase";
parameter c(j) "cost of object j"
/1 3,
2 4,
3 6,
4 14/;
EQUATIONS
obj "cost",
LP_constraint,
IP_constraint,
NLP_constraint;
obj.. cost =e= sum(j, c(j)*x(j));
LP_constraint.. sum(j, x(j)) =G= 1;
IP_constraint.. x('2') + x('4') =G= 1;
NLP_constraint.. x('3') + x('4') =G= 1;
MODEL purchase /all/;
SOLVE purchase using MIP minimizing cost;
|
free variable cost "total cost";
sets j "item j" /1*4/;
positive variables x(j) "whether to include item in the purchase";
parameter c(j) "cost of object j"
/1 3,
2 4,
3 6,
4 14/;
EQUATIONS
obj "cost",
LP_constraint,
IP_constraint,
NLP_constraint;
obj.. cost =e= sum(j, c(j)*x(j));
LP_constraint.. sum(j, x(j)) =G= 1;
IP_constraint.. x('2') + x('4') =G= 1;
NLP_constraint.. x('3') + x('4') =G= 1;
MODEL purchase /all/;
SOLVE purchase using LP minimizing cost;
|