Difference between revisions of "Mixed-Integer linear programming"

From Optimization for Chemical Engineering: 4G3
Jump to navigation Jump to search
Line 48: Line 48:
! References and Notes
! References and Notes
|-
|-
| 25 February
| 25 March
| 11B
| 11B
| align="left" colspan="1"|
| align="left" colspan="1"|
Line 56: Line 56:
[https://docs.google.com/document/d/12jmwaBfvSu0l8Wn3KC0JIJGBqjdloteNQJMgkW6aQyY  Handout from class]
[https://docs.google.com/document/d/12jmwaBfvSu0l8Wn3KC0JIJGBqjdloteNQJMgkW6aQyY  Handout from class]
| [https://www.dropbox.com/s/g4se3kw4zwmv3ri/2015-4G3-Class-11B.mp4?dl=1 Video]  
| [https://www.dropbox.com/s/g4se3kw4zwmv3ri/2015-4G3-Class-11B.mp4?dl=1 Video]  
|align="left" colspan="1"|
|align="left" colspan="1"|  
See the GAMS codes below
|-
| 30 March
| 12A
| align="left" colspan="1"|
More problems that can be solved with integer variables
* Knapsack problem
* Mutual exclusivity constraints
* Dependence constraints
* Allocation problems
| align="left" colspan="1"|
[https://docs.google.com/document/d/1EhXsp-Whc-DfgxvSkAAqu3jRyOcBo-HubWvOqpQ1LQg  Handout from class]
| <!-- [https://www.dropbox.com/s/g4se3kw4zwmv3ri/2015-4G3-Class-11B.mp4?dl=1 Video] -->
|align="left" colspan="1"|
See the GAMS codes below
|}
|}



Revision as of 16:49, 30 March 2015

Class date(s): 25 March 2015
Download video: Link [787 M]

Resources

Scroll down, if necessary, to see the resources.

Date Class number Topic Slides/handouts for class Video file References and Notes
25 March 11B
  • Representation of integer variables
  • Types of problems that can be solved with integer variables

Handout from class

Video

See the GAMS codes below

30 March 12A

More problems that can be solved with integer variables

  • Knapsack problem
  • Mutual exclusivity constraints
  • Dependence constraints
  • Allocation problems

Handout from class

See the GAMS codes below


Solving a basic ILP

free variable        income    "total income";
positive variables   x1, x2;
binary variable      delta     "use ingredient x3 or not at all";

EQUATIONS
obj    "maximize income",
blend  "blending constraint";
obj..   income =E= 18*x1 - 3*x2 - 9*(20*delta);
blend.. 2*x1 + x2 + 7*(20*delta) =L= 150;
x1.up = 25;
x2.up = 30;

model recipe /all/;
SOLVE recipe using MIP maximizing income;

Solving the knapsack problem

free variable        value "total value";
sets                 j     "item j" /1*5/;
binary variables     x(j)  "whether to include item in the knapsack";

parameter   v(j) "value of object j"
/1   4,
 2   2,
 3   10,
 4   1,
 5   2/;

parameter   w(j) "weight of object j"
/1  12,
 2   1,
 3   4,
 4   1,
 5   2/;

EQUATIONS
obj     "maximize value",
weight  "weight constraint";

obj..    value =e= sum(j, v(j)*x(j));
weight.. sum(j, w(j)*x(j)) =L= 15;

model knapsack /all/;
solve knapsack using mip maximizing value;

Solving the knapsack problem for selecting amount projects, with constraints

free variable        value "total value";
sets                 j     "item j" /1*5/;
binary variables     x(j)  "whether to include item in the project";

parameter   v(j) "value of object j"
/1   50,
 2   72,
 3   25,
 4   41,
 5   17/;

parameter   w(j) "cost of object j"
/1   8,
 2   21,
 3   15,
 4   10,
 5   7/;

EQUATIONS
obj     "maximize value",
weight  "weight constraint",
me1v2   "1 and 2 are mutually exclusive",
me1v3v5 "1, 3 and 5 are mutually exclusive",
d4v3    "4 depends on 3";

obj..    value =e= sum(j, v(j)*x(j));
weight.. sum(j, w(j)*x(j)) =L= 35;

me1v2..    x('1') + x('2') =L= 1;
me1v3v5..  x('1') + x('3') + x('5') =L= 1;
d4v3..     x('4') =L= x('3');

model projects /all/;
solve projects using mip maximizing value;