## Supercritical Fluid Extraction



Chad Glen Kyle Lefebvre



## Supercritical Fluid Extraction



### **SCFE** Performance



### Decaffeination

Coffee beans have many constituents giving it the rich and flavorful taste we all enjoy

What does decaffeination accomplish?

Specific removal of caffeine without affecting the other constituents

# Extractor Sizing

Assuming coffee beans are spherical, with constant surface concentration:

$$\frac{m_t}{m_o} = 1 - B * \exp(-kt)$$
where  $B = \frac{6}{\pi^2}$  and  $k = \frac{D\pi^2}{r^2}$ 

Diffusivity (D) =  $2x10^{-11}$  to  $20 x10^{-11} m^2/s$ 

%Extracted  $(m_t/m_o) > 0.97$ 

Radius ~= 0.32 cm

### **Extractor Sizing**

$$V = M_{beans} / \rho_{beans} + \left[\frac{M_{beans}C_{caff}}{Sol_{caff/CO_2}} * \frac{M_{w,CO_2}}{M_{w,caff}}\right] / \rho_{CO_2}$$

Solubility: 0.025 moles caffeine / moles  $CO_2$  @ 34°C & 10 MPa Density of SC-CO<sub>2</sub>: 660.2 kg / m<sup>3</sup> Density of coffee beans ~= 560 – 700 kg/m<sup>3</sup>

### Cost of SCFE

A supercritical fluid extractor can be approximated by a pressurized vessel with one set of pumps **Capital costs:** SCFE:  $$113,700 \pm $45,500$ Pumps: \$66,000 ± \$20,000 Total:  $$179,700 \pm $65,500$ **Operating costs:** CO<sub>2</sub> Pressurization: \$50, 700 annually

### References

- G. Brunner, "Supercritical fluids: technology and application to food processing," Journal of Food Engineering, vol. 67, pp. 21-33, 2005.
- H. Sovova, "Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation" Journal of Supercritical Fluids, vol. 33, no. 1, pg. 35-52, 2005.
- Q D.R. Woods, "Cost Estimations for the Process Industries", McMaster University. Hamilton, ON. 1983
- Anderson, A., Shimoni, E., Liardon, R., Labuza, T.P., "The diffusion kinetics of carbon dioxide in fresh roasted and ground coffee," Journal of Food Engineering, vol 59, pp. 71-78, 2003.