Separation Processes ChE 4M3

kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/4M3

Overall revision number: 174 (September 2013)

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes

All of the above can be done by writing to

kevin.dunn@mcmaster.ca

or anonymous messages can be sent to Kevin Dunn at

http://learnche.mcmaster.ca/feedback-questions

If reporting errors/updates, please quote the current revision number: 174

From the previous class

- We covered the admin issues
- Grading
- And in particular what is appropriate group work

Overview of Separation Processes

- Why study separation processes?
- Economics of separation processes
- Some everyday examples
- Example flowsheet: Sugar production
- Separating agents
- Classification of separation processes

Why separate?

Can't beat Nature: "Second Law of Thermodynamics"

- salt left in water
- CO₂ pumped into the atmosphere
- pollutants dumped into water
- your house / condo / apartment
- Things seldom separate out for us in the desired way, unless we put in some form of work or add another material
- "No free lunch"

How to separate salts from water

electrodialysis

- electrodeionization
- evaporation through heating with condensation
- evaporation under vacuum
- freezing to form ice crystals
- reverse osmosis
- ion exchange
- apply pressure and force it through a membrane that delays (filters out) salts

Reference:

Usually there are multiple ways to achieve a required separation.

How to separate salts from water

- electrodialysis
- electrodeionization
- evaporation through heating with condensation
- evaporation under vacuum
- freezing to form ice crystals
- reverse osmosis
- ion exchange
- apply pressure and force it through a membrane that delays (filters out) salts

Reference: King, p 16

Usually there are multiple ways to achieve a required separation.

Why study separation processes?

- 50% to 90% of capital investment on petroleum and other chemical-reaction based flowsheets [King, p 15]
 - Expense often in proportion to the level of purity (called the separation factor) [Treybal, p 2]
- ▶ 60 to 100% of the ongoing operating costs in chemical plants
- Some important problems facing (the global) "us" are separation problems:
 - carbon capture and sequestration/storage (CCS) ... don't forget about methane
 - \blacktriangleright other air pollutants (e.g. cleaning small dust particles $\sim 5 \mu m)$
 - access to clean water/sanitation

These problems will be an important part of your career, and impact your life, as the world's population approaches 8, 9 and then 10 billion in our lifetime (expected around 2050 to 2080).

World population: UN projections

Everyday examples

Separation processes at home:

- screening: sieve to strain water from pasta
- absorption: washing dishes/hands (fat dissolves into non-polar branch)
- liquid/liquid extraction: soak spices in oil to extract flavour
- cyclone: vacuum cleaner
- filtering: vacuum cleaner; furnace filter
- leaching: coffee/espresso maker
- leaching: making tea
- adsorption: water filter
- centrifugation: clothes washing machine
- phase change by heat addition: clothes drier
- phase change by heat removal: dehumidifier

Everyday examples

Separation processes at home:

- screening: sieve to strain water from pasta
- absorption: washing dishes/hands (fat dissolves into non-polar branch)
- liquid/liquid extraction: soak spices in oil to extract flavour
- cyclone: vacuum cleaner
- filtering: vacuum cleaner; furnace filter
- leaching: coffee/espresso maker
- leaching: making tea
- adsorption: water filter
- centrifugation: clothes washing machine
- phase change by heat addition: clothes drier
- phase change by heat removal: dehumidifier

Everyday examples

Separation processes in your body:

- kidneys: separates waste from blood; reabsorbs water and salts back into blood
- Iungs: release of CO₂ from blood
- liver: breaks down toxins, excreted into bile
- gallbladder: concentrates bile
- intestines: absorb nutrients
- spleen: removes old red blood cells
- Iymph nodes: filter foreign particles (e.g. cancers)

Engineering example

A common, everyday substance: sugar [King, p 2 to 9]

Video http://www.youtube.com/watch?v=ZBOou6cahtw

Sugar flowsheet (part 1)

Source: C.J. King, Separation Processes

Sugar flowsheet (part 2)

Source: C.J. King, Separation Processes

Topics that you want to cover

Based on the class activity yesterday, from highest to lowest:

- 5 Distillation, including rectification, flash, divided-wall columns
- 4 Membranes, including reverse osmosis
- 3 Filtration (various types: regular, ultra-, nano-)
- 3 Various types of water treatment
- 2 Centrifuges
- 2 Carbon capture and sequestration
- 1 Crystallization
- 1 Chromatography
- 1 Scrubbers (gas/solid/liquid)
- 1 Flotation
- 1 Liquid-liquid extraction
- 1 Electrostatic precipitation

How this course is structured

- We aim to consider a variety of separation systems
- Solids and (liquids and gases) = fluids
- Cover unit operations that rely on:
 - mechanical techniques to separate
 - mass transfer
 - phase creation or addition
 - heat transfer

Current plan for 4M3 in 2013

Bioseparations

- Many of the topics we will cover are part of a pure bioseparations course
- Often called "downstream" processing in the bio literature
- Only difference: they are operated under "bio-compatible" conditions: T, P, pH, aqueous media
 - ▶ i.e. all unit operations downstream of the bioreactors
- Unit operations include:
 - cell disruption: increase entropy!
 - centrifugation *
 - precipitation
 - adsorption and chromatography *
 - filtration *
 - membrane separation *
 - electrophoresis
 - * = a topic we will cover in 4M3

In this regard, you can see bioprocess separations are naturally designed and operated by chemical engineers.

How this course is structured

For each unit operation we consider

- the physical principle that causes separation
- basic concepts to size the unit and specify it; scale-up issues
- issues that affect the unit's cost
- troubleshoot problems with the unit
- how to optimize it (e.g. use less energy, increase separation efficiency, modify an existing unit's purpose)

Tutorial question: another way of looking at separations

Fill in various separation processes in these 9 rectangles:

MINOR COMPONENT				
		Solid	LIQUID	GAS/VAPOUR
MAJOR COMPONENT	OLLD			
	Tiquib			
	GAS/VAPOUR			

Separating agents: MSA and ESA

A material, force, or energy source applied to the feed for separation

i.e. what you add to get a separation. MSA = mass separating agent and ESA = energy separating agent

- heat (ESA)
- liquid solvent (MSA)
- pressure (ESA)
- vacuum
- membrane
- filter media
- electric field
- temperature gradient
- gravitational field (natural, or artificially created)
- adsorbent
- absorbent

Separating agents: MSA and ESA

A material, force, or energy source applied to the feed for separation

i.e. what you add to get a separation. MSA = mass separating agent and ESA = energy separating agent

- heat (ESA)
- liquid solvent (MSA)
- pressure (ESA)
- vacuum
- membrane
- filter media
- electric field
- temperature gradient
- gravitational field (natural, or artificially created)
- adsorbent
- absorbent

Separation factor

As mentioned, we will introduce a number of important principles we will re-use later.

Separation factor

$$S_{ij} = \frac{x_{i,1}/x_{j,1}}{x_{i,2}/x_{j,2}}$$
Species
$$i j$$
2

• select *i* and *j* so that $S_{ij} \ge 1$

 units of x terms in the above equation can be mass or mole fractions (or flows)

any units can be used, as long as you are consistent

Based on this definition: we can see why solid-fluid separations often have high separation factors