Separation Processes, ChE 4M3, 2012 Assignment 5

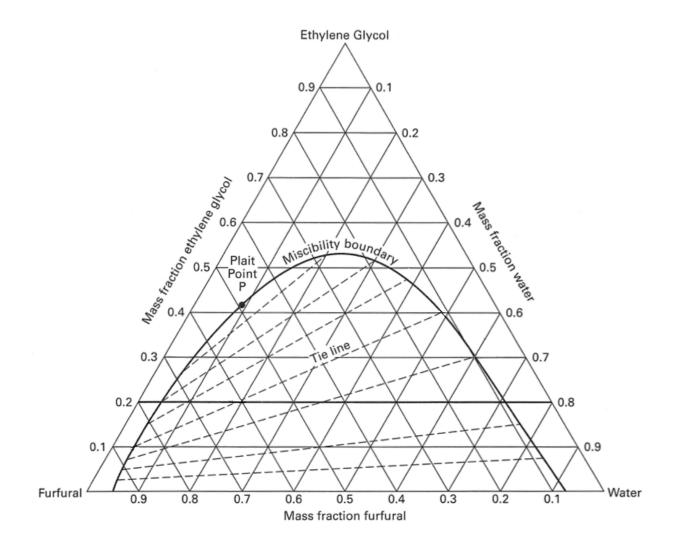
Kevin Dunn, kevin.dunn@mcmaster.ca

Due date: 30 November 2012

Objectives: Confirming your understanding of liquid-liquid extraction and adsorption.

Question 1

 $2.5\,\mathrm{m}^3$ of wastewater solution with $0.25\,\mathrm{kg}$ phenol.m⁻³ is mixed in a batch reactor with $3.0\,\mathrm{kg}$ granular activated carbon until equilibrium is reached. Use the following values determined in the lab, calculate the final equilibrium values of phenol extracted and percent recovery.


$C_{\mathbf{A}}$	$C_{\mathbf{A},\mathbf{S}}$
0.004	0.026
0.0087	0.053
0.019	0.075
0.027	0.082
0.094	0.123
0.195	0.129

- 1. Plot the isotherm.
- 2. Determine the isotherm type.
- 3. Calculate the isotherm parameters.
- 4. Calculate the steady-state conditions in the batch reactor for C_A in g.cm⁻³ and for $C_{A,S}$ in grams solute per gram of activated carbon.
- 5. Calculate the percentage amount of phenol that is recovered by the adsorbent.

Question 2

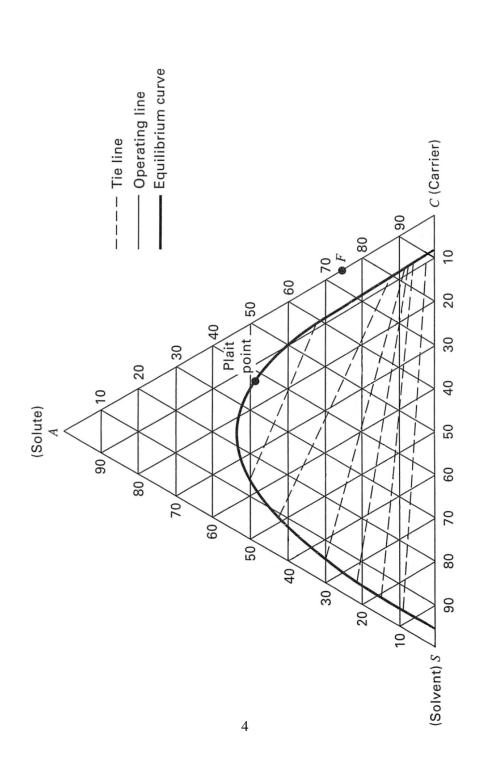
The aim is to recover ethylene glycol from water using furfural as solvent (the ternary diagram for furfural, ethylene glycol and water at the unit's operating temperature is provided).

- 1. Calculate the equilibrium compositions leaving a single mixer-settler unit operated at:
 - the recycled solvent stream: $105 \, \mathrm{kg.hr^{-1}}$ with a composition of 84% furfural, and unrecovered ethylene glycol at 5%, with the rest being water.
 - the feed stream contains 42% ethylene glycol and 58% water at a rate of 200 kg.hr⁻¹.
- 2. Calculate the flow rates of the extract and raffinate streams.
- 3. What is the distribution (partition) coefficient, D_A , for A = ethylene glycol (see course notes for definition)?
- 4. What is the distribution (partition) coefficient, $D_{\rm C}$, for C = water, using this same definition?

- 5. What is the separation factor for i = ethylene glycol from j = water in the 1=extract and 2=raffinate streams? Also show the relationship between the separation factor and the previous two distribution coefficients.
- 6. What will happen to the separation factor when operating at a lower feed flow rate; show a construction on your diagram to demonstrate it.

Question 3

Consider a system for which you have been given the ternary diagram (see next page). A = solute, S = solvent, C = carrier. The feed, F, enters at 112 kg/hr with composition of 25 wt% solute and 75 wt% carrier, shown as point F.


- 1. Calculate the flow and composition of the extract and raffinate from (covered in class):
 - (a) 1st co-current stage, using a pure solvent flow of 50 kg/hr.
 - (b) 2nd co-current stage, which is few with an a fresh solvent flow of 50 kg/hr.
- 2. For the overall 2-stage system, find the (covered in class):
 - (a) overall recovery, defined using the mass flows of $\frac{\text{Feed} R_2}{\text{Feed}}$
 - (b) overall concentration [kg/kg] of combined extract streams, E_1 and E_2 combined concentration.
- 3. New: The objective now is to have a counter-current system so the raffinate leaving in the $N^{\rm th}$ stage, R_N has $y_{R_N}=0.025$.
 - (a) What is the maximum allowable solvent flow to achieve $y_{R_N} = 0.025$?
 - (b) Explain whether it's possible to achieve a final extract stream of concentration $y_{E_1} = 0.20$.
 - (c) Show the construction on the ternary diagram for the number of equilibrium stages to achieve $y_{R_N} = 0.025$, given a solvent flow of 15 kg/hr.
 - (d) Plot, on the same axes, the concentrations in the extract and raffinate streams from each stage.
 - (e) Calculate the distribution (partition) coefficient for the solute in each stage, $D_{A,i} = \frac{y_{E_i,A}}{x_{R_i,A}}$

Submit the single ternary diagram for part (1 and 2), and another ternary diagram for part (3).

Be sure to make a copy of your filled in diagrams, because you might not be able to pick up your graded assignment 5 before the final exam.

Questions 4 and 5 will be posted soon.

END

