Recap: Cross-flow arrangements

$N=3$ in this illustration

- Recovery $=$ fraction of solute recovered

$$
1-\frac{\left(x_{R_{N}}\right)\left(R_{N}\right)}{\left(x_{F}\right)(F)}
$$

- Concentration of overall extract $=$ solute leaving in each extract stream, divided by total extract flow rate

$$
\frac{\sum_{n}^{N}\left(y_{E_{n}}\right)\left(E_{n}\right)}{\sum_{n}^{N} E_{n}}
$$

Review from last time

Review from last time

Review from last time

Cross-current vs counter-current

Cross-current ($N=2$ stages)

- We combine multiple extract streams
- (Only 2 in illustration)
- In general: $y_{E_{1}}>y_{E_{2}}>\ldots$
- Fresh solvent added at each stage

Counter-current ($N=2$ stages)

- "Re-use" the solvent, so
- Far lower solvent flows
- Recovery $=1-\frac{\left(x_{R_{N}}\right)\left(R_{N}\right)}{\left(x_{F}\right)(F)}$
- Concentration $=y_{E_{1}}$
- How many stages? What solvent flow?

You will have an assignment question to compare and contrast these two configurations

What we are aiming for

General approach:

1. Use ternary diagrams to determine operating lines
2. Estimate number of "theoretical plates" or "theoretical stages"
3. Convert "theoretical stages" to actual equipment size. E.g. assume we calculate that we need $N \approx 6$ theoretical stages.

- does not mean we require 6 mixer-settlers (though we could do that, but costly)
- it means we need a column which has equivalent operation of 6 counter-current mixer-settlers that fully reach equilibrium
- at this point we resort to correlations and vendor assistance
- vendors: provide HETS $=$ height equivalent to a theoretical stage
- use that to size the column
- unit height $($ or size $)=\frac{\text { HETS } \times \text { number of theoretical stages }}{\text { stage efficiency }}$

For example

WINTRAY installed in BTX Operating Plant

Figure 2: Concept and Flow of WINTRAY System
[WINTRAY (Japanese company; newly patented design)]

Two counter-current units

Reference for this section: Seader textbook, 3rd ed, p 312 to 324.

Consider $N=2$ stages for now. Steady state mass balance:

$$
F+E_{2}=R_{1}+E_{1} \quad R_{1}+S=R_{2}+E_{2}
$$

Rearrange:

$$
\begin{gathered}
F-E_{1}=R_{1}-E_{2} \quad R_{1}-E_{2}=R_{2}-S \\
\left(F-E_{1}\right)=\left(R_{1}-E_{2}\right)=\left(R_{2}-S\right)=P
\end{gathered}
$$

Note: each difference is equal to P (look on the flow sheet above where those differences are).

Counter-current graphical solution: 2 units

Rearranging again:

$$
\begin{aligned}
& F=E_{1}+P \\
& R_{1}=E_{2}+P \\
& R_{2}=S+P
\end{aligned}
$$

Interpretation: P is a fictitious operating point on the ternary diagram (from lever rule)

- F is on the line that connects E_{1} and P
- R_{1} is on the line that connects E_{2} and P
- R_{2} is on the line that connects S and P

Counter-current graphical solution: 2 units Step 1

For example, let's require $x_{R_{2}, A}=0.05$ (solute concentration in raffinate). Given an S flow rate, what is $y_{E_{1}, A}$? (concentration of solute in extract)

Counter-current graphical solution: 2 units

 Step 2

Note: the line connecting E_{1} to R_{2} is not a tie line. We use the lever rule and an overall mass balance $\left(F+S=E_{1}+R_{2}\right)$ to solve for all flows and compositions of F, S, E_{1}, and R_{2}.
$y_{E_{1}, A} \approx 0.38$ is found from an overall mass balance, through M. Simply connect R_{2} and M and project out to E_{1}.

Counter-current graphical solution: 2 units Step 3

Extrapolate through these lines until intersection at point P.

Counter-current graphical solution: 2 units Step 4

Once we have E_{1}, we can start: note that in stage 1 the R_{1} and E_{1} streams leave in equilibrium and can be connected with a tie line.

Counter-current graphical solution: 2 units Step 5

Again recall:
 $$
R_{1}=E_{2}+P
$$

R_{1} is on the line that connects E_{2} and P

Since we have point P and R_{1} we can bring the operating line back and locate point E_{2}

Counter-current graphical solution: 2 units Step 6

The last unit in a cascade is a special case: we already know $R_{N=2}$, but we could have also calculated it from the tie line with E_{2}. We aim for some overshoot of R_{N}. (Good agreement in this example.)

In general: Counter-current units

$F+E_{2}=E_{1}+R_{1}$

$$
E_{2}+R_{2}=E_{3}+R_{1}
$$

$$
E_{n}+R_{n}=E_{n+1}+R_{n-1}
$$

Rearrange:

$$
\begin{gathered}
F-E_{1}=R_{1}-E_{2} \quad R_{1}-E_{2}=R_{2}-E_{3} \quad R_{n-1}-E_{n}=R_{n}-E_{n+1} \\
\left(F-E_{1}\right)=\left(R_{1}-E_{2}\right)=\ldots=\left(R_{n-1}-E_{n}\right)=\left(R_{n}-E_{n+1}\right)=\ldots=\left(R_{N}-S\right)=\mathbf{P}
\end{gathered}
$$

Notes:

1. each difference is equal to P (the difference between flows)
2. E_{n} and R_{n} are in equilibrium, leaving each stage [via tie line]

Counter-current graphical solution

1. We know F and S; connect with a line and locate "mixture" M
2. Either specify E_{1} or R_{N} (we will always know one of them)
3. Connect a straight line through M passing through the one specified
4. Solve for unspecified one [via tie line]
5. Connect S through R_{N} and extrapolate
6. Connect E_{1} through F and extrapolate; cross lines at P
7. Locate P by intersection of 2 lines
8. In general: connect E_{n} and R_{n} via equilibrium tie lines

Tutorial-style question

Consider a system for which you have been given the ternary diagram (see next slides). $A=$ solute, $S=$ solvent (100% pure),
$C=$ carrier. The feed, F enters at $112 \mathrm{~kg} / \mathrm{hr}$ with composition of $25 \mathrm{wt} \%$ solute and $75 \mathrm{wt} \%$ carrier.
1.

Calculate the flow and composition of the extract and raffinate from:

- 1st cross-current stage, using a pure solvent flow of $50 \mathrm{~kg} / \mathrm{hr}$.
- 2nd cross-current stage, with an additional solvent flow of $50 \mathrm{~kg} / \mathrm{hr}$.

2. For the overall 2-stage cross-current system, find the:

- overall recovery [answer: ~93\%]
- overall concentration of combined extract streams [answer: ~21\%]

3. The objective now is to have a counter-current system so the raffinate leaving in the $N^{\text {th }}$ stage, R_{N} has $y_{R_{N}}=0.025$

- Show the construction on the ternary diagram for the number of equilibrium stages to achieve $x_{R_{N}}=0.025$, given a solvent flow of $28 \mathrm{~kg} / \mathrm{hr}$.
- Calculate the overall recovery and concentration of the extract stream.
- Plot on the same axes the concentrations in the extract and raffinate streams.

Tutorial solution: step 1

Tutorial solution: step 2

Tutorial solution: step 3

Tutorial solution: step 4

Tutorial solution: step 5

Tutorial solution: step 6

Tutorial solution: concentration profile

For practice (A)

For practice (B)

Counter-current graphical solution: 2 units

 Step 3(b)

Thought experiment: What is the minimal achievable E_{1} concentration? mentally move point M towards S. What happens to P as solvent flow S is increased? Alternative explanation next.

Counter-current graphical solution: maximum solvent flow

 Step 3(b)

Subtle point: minimal achievable $E_{1}^{\text {min }}$ concentration:

- occurs at a certain maximum solvent flow rate indicated by O
- note that R_{2} is fixed (specified) in this example

