Separation Processes ChE 4M3

kevin.dunn@mcmaster.ca
http://learnche.mcmaster.ca/4M3

Overall revision number: 220 (October 2013)

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes

All of the above can be done by writing to

kevin.dunn@mcmaster.ca

or anonymous messages can be sent to Kevin Dunn at

http://learnche.mcmaster.ca/feedback-questions

If reporting errors/updates, please quote the current revision number: 220

References

- Geankoplis, "Transport Processes and Separation Process Principles", 3rd or 4th edition, chapter 14.
- Richardson and Harker, "Chemical Engineering, Volume 2", 5th edition, chapter 9.
- Perry's Chemical Engineers' Handbook, 8th edition, chapter 18.8.
- Svarovsky, "Solid Liquid Separation", 3rd or 4th edition.
- Seader et al. "Separation Process Principles", page 800 to 802 in 3rd edition.
- Schweitzer, "Handbook of Separation Techniques for Chemical Engineers", chapter 4.5.

Why consider centrifuges?

- When gravity (freely available) is not fast enough
- Decrease the separation time and increase separation factor
- Much smaller piece of equipment
- Achieve separations not possible by gravity:
 - overcome Brownian limits
 - overcome convection currents
 - overcome stabilizing forces that hold an emulsion together

Why not just apply flocculation?

Terminology

[http://en.wikipedia.org/wiki/File:Tabletop_centrifuge.jpg]

- Suspension: the mixed material added into the centrifuge tube
- Pellet or precipitate: hard-packed concentration of particles after centrifugation
- Supernatant: clarified liquid above the precipitate

Uses

Used since 1700's:

- 1. separate particles from fluid based on density
- 2. separates immiscible fluids (liquid and even gases) of different densities
- 3. to enhance drainage of fluid from particles for drying
- 4. enhance mass transfer (look at centrifugal packed bed contactors in your own time)

Examples:

- Cream from milk (milk is an emulsion)
- Clarification: juice, beer (yeast removal), essential oils
- Widely used in bioseparations: blood, viruses, proteins
- Remove sand and water from heavy oils

Interesting use: gas-gas separation

Uranium enrichment in a Zippe-type centrifuge: U-235 is only 1.26% less dense than U-238: requires counter-current cascade

[http://en.wikipedia.org/wiki/File:Gas_centrifuge_cascade.jpg]

Principle of operation

- items being separated must have a density difference
- it is not a difference in the mass, only density
 - Video of emulsion separation at high G's
- centrifugal force acts outward direction = $ma = m(r\omega^2)$
 - m = particle's mass [kg]
 - r = radial distance from center point [m]

•
$$\omega = \text{angular velocity} = \frac{d\theta}{dt} \text{ [rad.s}^{-1}\text{]}$$

• recall
$$2\pi$$
 rad.s⁻¹ = 1Hz

▶ and 1 rad.s⁻¹ ≈ 9.55 revolutions per minute [rpm]

•
$$G = \frac{mr\omega^2}{mg} = \frac{r\omega^2}{g}$$

Example	Revolutions per minute	G's
Car going round and round	10 to 15	1 to 2
Washing machine at home	1500	625 (r=0.25m)
Industrial centrifuge	< 15000	25000 (r=0.1m)
Laboratory centrifuge	30,000 to 100,000	100,000 to 800,000
Zippe-type centrifuge*	90,000	$\sim 1 imes 10^6$

* tangential velocity > Mach 2 \sim 700m.s⁻¹

Laboratory centrifuges

Main selection factors:

- 1. duration = t [use minutes in the equation below]
- 2. maximum rotational speed = RPM_{max}

$$t = \frac{k}{S}$$

> $S =$ Svedberg coefficient of the material (from tables, experiments)

r_{max} and r_{min} as shown above [cm]

$$k = 2.53 \times 10^{11} \left(\frac{\ln \left(r_{\max} - r_{\min} \right)}{\text{RPM}_{\max}^2} \right)$$

e.g. $S_{20} = 6.43$ for collagen

Tubular bowl centrifuge

- Most commonly used for small particle separation
- Fluid and suspended solids are fed at the center
- A vertical wall of fluid is formed. Useful video to see this.
- Feed is continually added, forcing fluid out the top, over the retaining wall. Solids accumulate inside the bowl.

Recall particles in a fluid: Stokes' law

Let's understand how the solid particles move:

Recall if Re < 1

$$v_{\mathsf{TSV}}^{\mathsf{grav}} = \frac{D_p^2 \left(\rho_p - \rho_f\right) g}{18\mu_f}$$

In a centrifuge, we have simply replaced g with a centrifugal force, $r\omega^2$ (gravity is negligible)

$$v_{
m horiz}^{
m cent} = rac{dr}{dt} = rac{D_{
ho}^2 \left(
ho_{
ho} -
ho_{
ho}
ight) r \omega^2}{18 \mu_f}$$

- The particle is also forced in the vertical direction of fluid flow at a constant upward velocity, so its net trajectory is curved.
- ▶ In centrifuges: particles are likely to have Re < 1 (why?)

Theoretical trajectories: tubular bowl centrifuge

Integrate from t = 0 where $r = r_1$ to the outlet, where we require the particle to be exactly at $r = r_2$ within a time of $t = t_*$ seconds:

$$t_* = \frac{18\mu_f}{D_p^2 \left(\rho_p - \rho_f\right) \omega^2} \ln \frac{r_2}{r_1}$$

Theoretical trajectories: tubular bowl centrifuge

Consider a particle moving with too slow a horizontal velocity (e.g. centrifuge is too slow).

- ▶ Within the time from t = 0 to t = t_{*}, this particle is moving too slowly, and will not reach the wall at r₂
- This particle is then assumed to have left in the supernatant (liquid discharge)

 $t = t_*$ gives a **bound** on the time it should take a particle to reach the wall at r_2 , starting at r_1 .

Calculating the centrifuge's throughput, Q

Once we know how long a particle should be in the centrifuge, we can calculate a feed flowrate, Q. The volume of fluid in the centrifuge is $V = \pi (r_2^2 - r_1^2) h$. Calculate the volumetric flow rate

$$Q_* = \frac{V}{t_*} = \frac{D_p^2 \left(\rho_p - \rho_f\right) \omega^2}{18\mu_f \ln(r_2/r_1)} \pi \left(r_2^2 - r_1^2\right) h \qquad [\text{m}^3.\text{s}^{-1}]$$

- ▶ What happens if we operate a flow rate slower/faster than this Q_{*}?
- Alternative interpretation: for a given flow Q_{*}, find the largest particle diameter that will arrive exactly at r₂ at height h.
 Particles with smaller D_p are expected to leave in supernatant.
- Obviously this is excessive: we have the horizontal discharge weir to retain particles that might not have reached r₂ at height h
- r₂ remains fixed for a purchased and installed centrifuge (design parameter)

Cut-size diameter

So to prevent excessive over design, we rather find the halfway mark between r_1 and r_2 , and solve the same equations to find the time, called t_{cut} , for a particle to reach this cut point:

$$Q_{\rm cut} = \frac{V}{t_{\rm cut}} = \frac{D_{\rm p,cut}^2 \left(\rho_p - \rho_f\right) \omega^2}{18\mu_f \ln\left[2r_2/(r_1 + r_2)\right]} \pi \left(r_2^2 - r_1^2\right) h$$

- we design for the cut-point volumetric flow rate Q_{cut}
- and can then solve for the cut point diameter, $D_{p,cut}$
- all other terms in the equation are known/set
- ▶ We can also design for a given diameter, and solve for the Q_{cut}.

Note: We could use any reasonable point between r_1 and r_2 . The 50% point is convention. It accounts for uncertainties in our flows, physical properties and idealities assumed with Stokes' law.

Example

A lab scale tubular bowl centrifuge has the following characteristics:

- $r_1 = 16.5 \text{ mm}$ and $r_2 = 22.2 \text{ mm}$
- bowl height of 115 mm
- 800 revolutions per second

It is being used to separate bacteria from a fermentation broth experiment.

If the broth has the following properties:

▶ $\rho_f = 1010 \text{ kg.m}^{-3}$ ← note how close these are

•
$$ho_{p} = 1040 \; {
m kg.m^{-3}}$$

•
$$\mu_f = 0.001 \text{ kg.m}^{-1}.\text{s}^{-1}$$

•
$$D_{p,\min} = 0.7 \ \mu m$$

 \leftarrow note how small

- 1. How many G's is the particle experiencing at r_2 ?
- 2. Calculate both Q_* and the more realistic Q_{cut} .
- 3. Verify whether Stokes' law applies.
- 4. What would be the area of the sedimentation vessel that would operate at this Q_{cut} ? *Hint*: recall that $A = \frac{Q}{VTSV}$.

Example

- 1. Illustrate the trajectory taken by a particle reaching the cut-point within time t_{cut}
- 2. *In the same duration of time*, what trajectory will a smaller particle have taken?

Sigma theory for centrifuges

Take the previous equation for Q_{cut} , multiply numerator and denominator by g, then substitute Stokes' law for particles settling under gravity:

$$v_{\mathsf{TSV}}^{\mathsf{grav}} = rac{\left(
ho_{m{
ho}} -
ho_{f}
ight) \mathsf{g} D_{m{
ho}}^{2}}{18 \mu_{f}}$$

we obtain:

$$Q_{\text{cut}} = \left(\frac{\left(\rho_p - \rho_f\right)gD_{p,\text{cut}}^2}{18\mu_f}\right) \cdot (\Sigma) = v_{\text{TSV}}^{\text{grav}} \cdot \Sigma$$
$$\Sigma = \frac{\omega^2 \left[\pi h \left(r_2^2 - r_1^2\right)\right]}{g \ln \left[2r_2/(r_1 + r_2)\right]}$$

 $\Sigma = f(r_1, r_2, h, \omega)$

Why use the Sigma term?

 $\blacktriangleright \Sigma = f(r_1, r_2, h, \omega)$

- it is only a function of the centrifuge's characteristics; not the particle or fluid
- Σ has units of m²: Σ is the equivalent surface area required for sedimentation by gravity
- Centrifuge A: $Q_{cut,A} = v_{TSV}^{grav} \cdot \Sigma_A$
- Centrifuge B: $Q_{\text{cut},B} = v_{\text{TSV}}^{\text{grav}} \cdot \Sigma_B$

$$\frac{Q_{\mathsf{cut},A}}{Q_{\mathsf{cut},B}} = \frac{\Sigma_A}{\Sigma_B}$$

- ► Used for scale-up of the same feed, i.e. the same v^{grav}_{TSV}
- Used for scale-up within the same types of equipment
- Σ equation is different for other centrifuge types
- Question: if I know Σ_A for a given centrifuge and for a given feed; can I calculate the performance, Q_{cut,B}, for a different feed stream?

More on the tubular bowl centrifuge

- Batch operation: stop to clean out solids; restart again; use paper on wall to assist solids removal [~ 15 min turnaround]
- Contamination possible, not always suitable for bioseparations
- A high L/D aspect ratio is used (around 8), as it is more stable to operate
- Minimize D; very high wall stresses are developed at higher diameters
- Can be used for fluid-fluid separation

$$\frac{\rho_H}{\rho_L} = \frac{r_2^2 - r_1^2}{r_2^2 - r_4^2}$$

Disc bowl (disc stack) centrifuges

[Geankoplis, Fig 14.4-4] Video to illustrate operation: http://www.youtube.com/watch?v=YMbaBLpInrc

Another video: http://www.youtube.com/watch?v=bzXUiLajVlg

Disc bowl centrifuges

- ► Recall: Q = V/t_{*} (the t_{*} will be different for disc bowl compared to tubular bowl)
- If we increase rate of fluid feed, we get higher throughput, Q
- Adding angled discs gives a greater surface area, hence greater volume treated, without increasing bowl diameter
- Widely used in bioseparations: no contamination (aseptic)
- Also for: fish oil, fruit juice, beverage clarification
- 3-phases separation: e.g. sand, oil, water mixtures

Disc bowl centrifuges

- \blacktriangleright Discs angled at 35 to 50°; \sim 50 to 150 discs per unit
- Typically between 0.15 to 1.0m in diameter; with rotational speeds of 0 to 12,000 rpm
- ▶ Typically used to treat up to 15% solids in feed stream
- Can be operated continuously (infrequent cleaning of discs)

$$\Sigma = \frac{2\pi\omega^2 N(r_1^3 - r_2^3)}{3g\tan\theta}$$

- N = number of disc plates
- $\theta = angle of disks$
- r₁ = outer cone radius
- $r_2 = \text{inner cone radius}$

Scroll centrifuges

The scroll allows for continuous removal of solids:

[Perry, fig 18-159]

Sedicanter: biotechnology, vitamin, soy, and yeast separations.

Scroll centrifuges

[Perry, fig 18-160]

- Sorticanter: used for plastics recycling
- General scroll centrifuges: used in oil-sands separations

Sequencing of centrifuges

[http://www.westfalia-separator.com/products/innovations/oil-sand-bitumen-process.html]

Safety

- careful selection of materials of construction: corrosion and withstand high forces
- heat removal might be required (some units come with integrated refrigeration)
- rotational equipment requires careful balance
- digital control is critical
 - PLC: programmable logical controllers
 - SCADA: supervisory control and data acquisition
 - safety interlocks
 - cameras are increasingly used to monitor sediment buildup: auto-stop and clean
- flammable fluids (e.g. solvents): nitrogen blanket

Choosing a centrifuge unit

Selecting a centrifuge

Based on required performance

Design a centrifuge for beer clarification

Design a separation plant to remove suspended yeast cells from beer.

Beer is produced in batches of 100 m³, with 4 batches per day.

Some data:

- ▶ Density of beer: 1020 kg.m⁻³
- Density of yeast cells: 1075 kg.m⁻³
- Yeast cell diameters: 4 to 6 μ m
- 11.5 metric tonnes of yeast are suspended in each 100 m³ fermenter
- Aseptic operation is vital

Further practice questions

- 1. In a test particles of density 2800 kg.m⁻³ and of size 5 μ m, equivalent spherical diameter, were separated from suspension in water fed at a volumetric throughput rate of 0.25 m³.s⁻¹. Calculate the value of the capacity factor, Σ . [Ans: $\Sigma = 1.02 \times 10^4$ m²]
- What will be the corresponding size cut for a suspension of coal particles in oil fed at the rate of 0.04 kg.s⁻³? The density of coal is 1300 kg.m⁻³ and the density of the oil is 850 kg.m⁻³ and its viscosity is 0.01 N.s.m⁻². [Ans: D_{p.cut} = 4μm]
- 3. Is Stokes' law applicable? [Ans: Calculate the v_{TSV}^{cent} and confirm if Re< 1]

[Richardson and Harker, v2, 5th ed, p482-483]