Separation Processes ChE 4M3

(c) Kevin Dunn, 2012

kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/4M3

Overall revision number: 107 (November 2012)

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- ▶ to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - ▶ "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

We appreciate:

- ▶ if you let us know about **any errors** in the slides
- any suggestions to improve the notes

All of the above can be done by writing to

kevin.dunn@mcmaster.ca

If reporting errors/updates, please quote the current revision number: 107

Liquid-liquid extraction (LLE)

[Flickr# 3453475667]

Definitions

- solute: species we aim to recover (A) from the feed
- ▶ feed or "feed solvent": one of the liquids in the system ("carrier")
- solvent: MSA (by convention: the "added" liquid)
- extract: solvent (not solute) mostly present in this layer. $y_{E,A} = \text{concentration of A}$, the solute, in extract.
- raffinate: residual solute in this layer = $x_{R,A}$
- distribution: how the solute partitions itself = $D_A = \frac{y_{E,A}}{x_{R,A}}$
 - measure of affinity of solute
 - $D_{A} = \frac{\mu_{R}^{0} \mu_{E}^{0}}{RT} = \frac{\text{chemical potential difference}}{(R)(\text{temperature})}$

5

Where/why LLE is used

Where?

- Bioseparations
- Nuclear (uranium recovery)
- Mining: nickel/cobalt; copper/iron
- Perfumes, fragrances and essential oils
- Fine and specialty chemicals

Why?

- Temperature sensitive products
- High purity requirements
- ► High-boiling point species in low quantity
- Need to separate by species type (rather than relative volatility)
- Close-boiling points, but high solubility difference
- Azeotrope-forming mixtures

Extractor types

- 1. Mixing/contacting:
 - turbulent contact between liquid phases
 - small droplet dispersion in a continuous phase
 - which phase is dispersed?
 - mass-transfer between phases
 - ▶ limited by solute loading in solvent
- 2. Phase separation:
 - reverse of mixing step
 - drops coalesce
 - relies on density difference
- 3. Collection of phases leaving the unit

What are we aiming for?

Main aims

- ▶ High recovery of solute overall (low x_R and high y_E)
- ▶ Concentrated solute in extract (high y_E)

How to achieve this?

- Counter-current mixer-settlers in series
- High interfacial area during mixing
- Reduce mass-transfer resistance
- Promote mass transfer
 - molecular diffusion
 - eddy diffusion

← orders of magnitude greater

Equipment for LLE

- Mixer-settlers
 - mix: impellers
 - mix: nozzles
 - mix: feeds meet directly in the pump
 - mix: geared-teeth devices
 - \blacktriangleright main aim: good contact; avoid droplets smaller than 2 μ m
 - settle: baffles, membranes
 - ▶ settle: ultrasound
 - ▶ settle: chemical treatment
 - settle: centrifuges
- Columns with:
 - ► (a) nothing or
 - ▶ (b) trays and/or
 - ▶ (c) packing and/or
 - ▶ (d) pulsating and/or
 - ▶ (e) agitation
- 3. Rotating devices

Important point: LLE is an equilibrium-limited separation (as opposed to rate-limited separations seen up to now).

Mixer-settlers

<code>[Richardson and Harker, p 745]</code> Common in mining industry: requirements $\sim\!\!40000\ L/min$ flows

Mixer-settlers

KnitMesh coalescer: consistency of "steel wool"

[Richardson and Harker, p 747]

Horizontal gravity settling vessel

[Seader, 3ed, p302]

Spray columns: separation principle is gravity

Tray columns

- coalescence on each tray
- ▶ tray holes: ~ 3mm
- breaks gradient formation (axial dispersion)

Tray columns with mechanical agitation

- shearing to create dispersion
- can have alternating layers of packing (coalescence)
- ▶ some column designs pulsate $\uparrow \Downarrow$

[Seader, 3ed, p302]

Rotating devices

[Seader, 3ed, p 306]

- "white" = lighter liquid
- "grey" = heavier liquid

Used when foams and emulsions would easily form: i.e. gentle mass transfer.

Linking up units (more on this later)

[Richardson and Harker, p 723]

Integration with downstream units

[Schweitzer, p 1-257]

Selecting a solvent

Schweitzer: "The **choice of solvent** for a LLE process can often have a more significant impact on the process economics than any other design decision that has to be made".

Which properties of a solvent influence our aims with LLE?

- ► High distribution coefficient (selectivity) for solute
- Low distribution coefficient for carrier
- Reasonable volatility difference with solute and carrier
- ▶ Reasonable surface tension: easy to disperse **and** coalesce
- High density difference: separates rapidly by gravity
- Stability to maximize its reuse
- Inert to materials of construction
- Low viscosity: maximizes mass transfer
- ► Safe: non-toxic, non-flammable
- Cheap, and easily available
- Compatible with carrier and solute: avoid contamination
- ▶ Doesn't foam, form emulsions, scum layers at interface

Calculating the distribution coefficient (in the lab only)

Mass balance:

$$Fx_F + Sy_S = Ey_E + Rx_R$$
$$D = \frac{y_E}{x_R}$$

If F = S = E = R and $y_s = 0$, then only measure x_R :

$$D = \frac{x_F}{x_B} - 1$$

- Capital letters refer to mass amounts
- ▶ y_{\square} ← refers to mass fractions in solvent layer
- $ightharpoonup x_{\square} \leftarrow$ refers to mass fractions in carrier and extract layers

Once D is determined, we can obtain phase diagrams to understand how the process will operate.

Also: see Perry's for many values of D

Triangular phase diagrams: from laboratory studies

21

Using a triangular phase diagrams

Lever rule

Mix P and Q

- ▶ mixture = K
- $\frac{PK}{KQ} = \frac{amount Q}{amount P}$
- The converse applies also: when separating a settled mixture
- Applies anywhere: even in the miscible region

Q1: Using the lever rule

Which is a more *flexible* system?

- ▶ S = pure solvent used
- ▶ $F = \text{feed concentration point (more correctly it is } x_F)$

Answer:

desirable, for (a). Difference between (a) and (b):

due to solvent choice

due to different temperatures

due to pH modification, etc

Q1: Using the lever rule

Which is a more *flexible* system?

- ▶ S = pure solvent used
- ightharpoonup F = feed concentration point (more correctly it is x_F)

Answer: range of feed concentrations (x_F) is wider, i.e. more desirable, for **(a)**. Difference between (a) and (b):

- due to solvent choice
- due to different temperatures
- ▶ due to pH modification, etc

Q2: Using the lever rule

Slide removed: was not a useful question

Q3: Using the lever rule

Mix a feed stream, F, containing C and A (i.e. x_F) with a pure solvent stream S (i.e. $y_S = 0$). Composition of the mixture?

Q3 *solution*: Using the lever rule

Composition of the mixture? Trick question: we need more information (e.g. amount of F and S must be given)

Q4: Going to equilibrium

Let that mixture M achieve equilibrium. What is the composition of the raffinate and extract?

Q4 *solution*: Going to equilibrium

What is the composition of the raffinate and extract? *Use the tie lines* [solid lines]; *or interpolate between existing ones.*

Q5: Altering flows

Same system, but now lower solvent flow rate (to try save money!). What happens to (a) extract concentration and (b) solute recovery?

Q5 solution: Altering flows

(a) extract concentration increases: (A at E*) > (A at E): $y_{E^*} > y_E$ (b) solute recovery drops: (A at R*) > (A at R): $x_{R^*} > x_R$

Q6: Composition of the mixture, *M*?

Q6 *solution*: Composition of the mixture, *M*?

Answer: M = 350 kg; $x_{M,A} = 0.17$; $x_{M,C} = 0.54$; $x_{M,S} = 0.29$

Q7: Composition of the 2 phases leaving in equilibrium?

Q7 solution: Composition of the 2 phases in equilibrium?

 $E_1 = 128 \text{kg}; \quad x_{F_1,A} = 0.33; \quad x_{F_1,C} = 0.06; \quad x_{F_1,S} = 0.61$

35

Phase diagram: furfural, water, ethylene glycol

Feed	Solvent
F = 100 kg	S = 200 kg
$x_{F,A} = 0.45$	$x_{S,A} = 0.0$
$x_{F,C} = 0.55$	$x_{S,C} = 0.0$
$x_{F,S} = 0.00$	$x_{S,S} = 1.0$

- ► A = ethylene glycol (solute)
- ► C = water (carrier)
- S = furfural (solvent)

AIM: to remove ethylene glycol (solute) from water (carrier) into solvent (furfural)

- 1. Calculate the mixture composition, M
- 2. Calculate the equilibrium compositions in E_1 and R_1

Note: extract is defined as "the solvent-rich stream leaving the system"

Solution: Phase diagram: furfural, water, ethylene glycol

Feed	Solvent
F = 100 kg	S = 200 kg
$x_{F,A} = 0.45$	$x_{S,A} = 0.0$
$x_{F,C} = 0.55$	$x_{S,C} = 0.0$
$x_{F,S} = 0.00$	$x_{S,S} = 1.0$

- ► A = ethylene glycol solute
- ► C = water (carrier)
- ► S = furfural solvent

Link units in series

[Richardson and Harker, p 723]

Q8: send raffinate from Q7 to second mixer-settler

Question: how much solvent should we use in the second stage?

Q8 solution: send raffinate from Q7 to second mixer-settler

Answer: equilibrium from point B (most solvent), C, D (least solvent) will each be different. Trade-off: higher extraction vs lower recovery

Course project

You should have all received feedback from me, via Google Docs

For the final report:

- ▶ Please give a flowsheet of the overall process
- Only focus on 1 separation unit operation
- ▶ Some groups have 2 or 3 separation steps: only 10 pages!
- ► You must focus on the **separation** step in the flowsheet
- Provide a detailed drawing of the unit
- You must show the detailed design calculation for sizing the unit
- Choose a basis for sizing: e.g.
 - based on the inlet requirement(s), or
 - based on the outlet requirement(s)
- ▶ Brief discussion on capital costs and annual operating costs
 - maintenance
 - ESA and/or MSA requirements

Report's length

10 pages maximum, please see course website

Administrative issues: dates

Unit	Previous date	Revised date
Assignment 4	01 November	06 November
Project report	09 November	16 November
Assignment 5	16 November	23 November
Take-home exam	30 November	30 November

Series of co-current units

N = 3 in this illustration

Recovery = fraction of solute recovered

$$1-\frac{(x_{R_N})(R_N)}{(x_F)(F)}$$

 Concentration of overall extract = solute leaving in each extract stream, divided by total extract flow rate

$$\frac{\sum_{n}^{N}(y_{E_{n}})(E_{n})}{\sum_{n}^{N}E_{n}}$$

[Schweitzer, p 1-263]

Co-current vs counter-current

Co-current (
$$N = 2$$
 stages)

Counter-current (
$$N = 2$$
 stages)

- We combine multiple extract streams
- ▶ (Only 2 in illustration)
- ▶ In general: $y_{E_1} > y_{E_2} > ...$
- Fresh solvent added at each stage

- ► "Re-use" the solvent, so
- ► Far lower solvent flows
- ▶ Concentration = y_{E_1}

You will have an assignment question to compare and contrast these two configurations

Some theory: Two counter-current units

Just **consider** N=2 **stages** for now. Steady state mass balance:

$$F + E_2 = E_1 + R_1$$
 $E_2 + R_2 = S + R_1$

Rearrange:

$$F - E_1 = R_1 - E_2$$
 $R_1 - E_2 = R_2 - S$
 $(F - E_1) = (R_1 - E_2) = (R_2 - S) = P$

Note: each difference is equal to P (look on the flow sheet where those *differences* are).

Rearranging again:

$$F + P = E_1$$

$$R_1 + P = E_2$$

$$R_2 + P = S$$

Interpretation: P is a fictitious operating point on the ternary diagram (from lever rule)

- \triangleright P connects F and E_1
- \triangleright P connects R_1 and E_2
- \triangleright P connects R_2 and S

For example, let's require $x_{R_2,A}=0.05$ (solute concentration in raffinate). What is $y_{E_1,A}$ then (concentration of solute in the extract)?

Note: the line connecting E_1 to R_2 is not a tie line. We use the lever rule and an overall mass balance $(F + S = E_1 + R_2)$ to solve for all flows and compositions of F, S, E_1 , and R_2 .

 $y_{E_1,A} \approx 0.38$ is found from an overall mass balance, through M.

Extrapolate through these lines until intersection at point P.

Minimal achievable E_1 concentration? mentally move point M towards S. What happens to P? Alternative (simpler?) explanation on next slide.

Counter-current graphical solution: maximum solvent flow

Subtle point: minimal achievable E_1^{min} concentration:

- occurs at a certain maximum solvent flow rate indicated by O
- ▶ note that R_2 is fixed (specified) in this example

Once we have E_1 , we can start: note that in stage 1 the R_1 and E_1 streams leave in equilibrium and can be connected with a tie line.

Since we have point P and R_1 we can bring the operating line back and locate point E_2

The last unit in a cascade is a special case: we already know $R_{N=2}$, but we could have also calculated it from the tie line with E_2 . We aim for some overshoot of R_N . (Good agreement in this example.)

In general: Counter-current units

$$F+E_2=E_1+R_1$$

$$E_2 + R_2 = E_3 + R_1$$

$$E_n + R_n = E_{n+1} + R_{n-1}$$

Rearrange:

$$F-E_1=R_1-E_2$$

$$R_1 - E_2 = R_2 - E_3$$

$$R_{n-1}-E_n=R_n-E_{n+1}$$

$$(F-E_1)=(R_1-E_2)=\ldots=(R_{n-1}-E_n)=(R_n-E_{n+1})=\ldots=(R_N-S)=\mathbf{P}$$

Notes:

- 1. each difference is equal to P (the difference between flows)
- 2. E_n and R_n are in equilibrium, leaving each stage via tie line

Counter-current graphical solution

- 1. We know F and S; connect with a line and locate "mixture" M
- 2. Either specify E_1 or R_N (we will always know one of them)
- 3. Connect a straight line through *M* passing through the one specified
- 4. Solve for unspecified one [via tie line]

- 5. Connect S through R_N and extrapolate
- 6. Connect E_1 through F and extrapolate; cross lines at P
- 7. Locate P by intersection of 2 lines
- 8. In general: connect E_n and R_n via equilibrium tie lines

Relating the theoretical stages to an actual unit

Assume we calculated $N \approx 6$, for example, as the theoretical stages required:

Note:

- does not mean we require 6 mixer-settlers (though we could do that, but costly)
- ▶ it means we need a column which has equivalent operation of 6 counter-current mixer-settlers that fully reach equilibrium
- at this point we resort to correlations and vendor assistance

Tutorial-style question

Consider a system for which you have been given the ternary diagram (see next slides). A = solute, S = solvent, C = carrier. The feed, F enters at 112 kg/hr with composition of 25 wt% solute and 75 wt% carrier.

- 1. Calculate the flow and composition of the extract and raffinate from:
 - ▶ 1st co-current stage, using a pure solvent flow of 50 kg/hr.
 - ▶ 2nd co-current stage, with an additional solvent flow of 50 kg/hr.
- 2. For the overall 2-stage system, find the:
 - ▶ overall recovery [answer: ~93%]
 - lacktriangle overall concentration of combined extract streams [answer: $\sim\!21\%$]
- 3. The objective now is to have a counter-current system so the raffinate leaving in the N^{th} stage, R_N has $y_{R_N} = 0.025$
 - ▶ What is the maximum allowable solvent flow?
 - ▶ Explain whether it's possible to achieve an extract stream of $y_{E_1} = 0.21$?
 - ▶ Show the construction on the ternary diagram for the number of equilibrium stages to achieve $y_{R_N} = 0.025$, given a solvent flow of 60 kg/hr.
 - Plot on the same axes the concentrations in the extract and raffinate streams.

For practice

For practice

References

- Schweitzer, "Handbook of Separation Techniques for Chemical Engineers", Chapter 1.9
- Seader, Henly and Roper, "Separation Process Principles", 3rd edition, chapter 8
- ► Richardson and Harker, "Chemical Engineering, Volume 2", 5th edition, chapter 13
- Geankoplis, "Transport Processes and Separation Process Principles", 4th edition, chapter 12.5 and 12.6
- ▶ Ghosh, "Principles of Bioseparation Engineering", chapter 7
- Uhlmann's Encyclopedia, "Liquid-Liquid Extraction", DOI:10.1002/14356007.b03_06.pub2