Separation Processes ChE 4M3

kevin.dunn@mcmaster.ca
http://learnche.mcmaster.ca/4M3

Overall revision number: 244 (October 2013)

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes

All of the above can be done by writing to

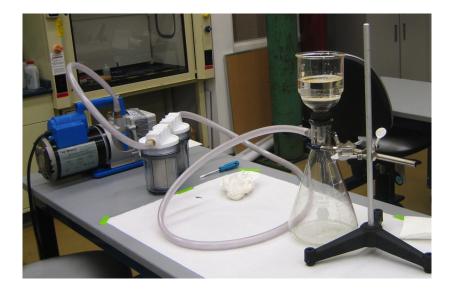
kevin.dunn@mcmaster.ca

or anonymous messages can be sent to Kevin Dunn at

http://learnche.mcmaster.ca/feedback-questions

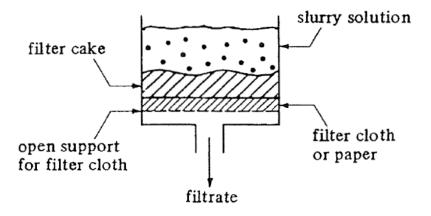
If reporting errors/updates, please quote the current revision number: 244

Filtration



Filtration section

Filtration: a pressure difference that causes separation of solids from slurry by means of a porous medium (e.g. filter paper or cloth), which retains the solids and allows the filtrate to pass

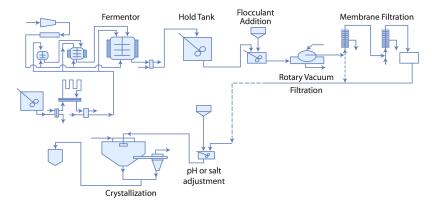


References on filtration

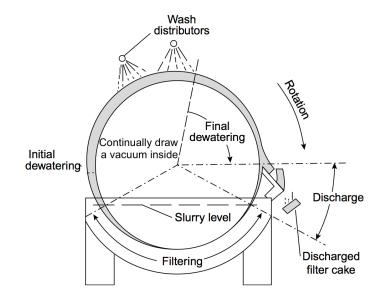
- Geankoplis, "Transport Processes and Separation Process Principles", 4th edition, chapter 14.
- Perry's Chemical Engineers' Handbook, 8th edition, chapter 18.
- Seader, Henley and Roper, "Separation Process Principles", 3rd edition, chapter 19.
- Uhlmann's Encyclopedia, "Filtration 1. Fundamentals", DOI:10.1002/14356007.b02.10.pub3

Why filtration?

 $\mathsf{Example:}$ alkaline protease, used as an additive in laundry detergent



Commercial units: rotary drum filter



Commercial units: plate and frame

Commercial units: plate and frame

Commercial units: plate and frame (beer clarification)

Questions to discuss

 What characteristics of a filtration system will you use to judge the unit's performance?

2. What factors can be used to adjust the units's performance?

Example: a rotary drum filter

Poiseuille's law

Recall from your fluid flow course that **laminar flow** in a pipe (considering no resistance):

$$\frac{-\Delta P}{L_c} = \frac{32 \ \mu \ v}{D^2}$$

$$\begin{array}{rcl} -\Delta P & = & \mbox{pressure drop from start (high P) to end of tube} & [Pa] \\ L_c & = & \mbox{length being considered} & [m] \\ \mu & = & \mbox{fluid viscosity} & [Pa.s] \\ v & = & \mbox{fluid's velocity in the pipe} & [m.s^{-1}] \\ D & = & \mbox{pipe diameter} & [m] \end{array}$$

Carmen-Kozeny equation through a bed of solids (cake)

 $\frac{-\Delta P}{L_c} = \frac{32 \ \mu \ v}{D^2}$ from which we derive the Carmen-Kozeny equation:

$$\frac{-\Delta P_c}{L_c} = k_1 \cdot \mu \cdot \frac{v}{\epsilon} \cdot \left(\frac{(1-\epsilon)S_0}{\epsilon}\right)^2$$

$$\begin{array}{rcl} -\Delta P_c &=& \mbox{pressure drop through the cake} & \mbox{[Pa]} \\ k_1 &=& 4.17, \mbox{a constant} & \mbox{[-]} \\ \epsilon &=& \mbox{void fraction, or porosity typical values?} & \mbox{[-]} \\ S_0 &=& \mbox{specific area per unit volume} & \mbox{[m}^2.\mbox{m}^{-3} = \mbox{m}^{-1} \mbox{]} \end{array}$$

 S₀ = specific surface area per unit volume is a property of the solids

• Prove in the next assignment, for spheres, $S_0 = \frac{6}{d} = f(d)$

Solids balance

Mass of solids in the filter cake = $A L_c (1 - \epsilon) \rho_p$

Mass of fluid trapped in the filter cake = A $L_c \ \epsilon \ \rho_f \approx$ small

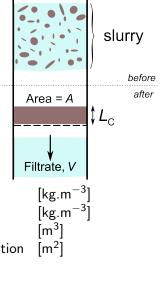
Mass of fluid in the filtrate = $V \rho_f$

What key assumptions are being made here?

$ ho_{p}$	=	solid particle density
$ ho_{f}$	=	fluid density
V	=	volume of filtrate collected
Α	=	cross sectional area for filtrat

Then define slurry concentration:

$$C_{S} = \frac{\text{mass of dry solids}}{\text{volume of liquid in slurry}} \approx \frac{\text{mass of dry solids}}{\text{volume of filtrate}} = \frac{AL_{c} \left(1 - \epsilon\right) \rho_{p}}{V}$$



Exercise

 $1. \ \mbox{Calculate the mass of solids in the cake for the case when }$

•
$$\rho_p = 3000 \text{kg.m}^{-3}$$

•
$$A = 8m^2$$

2. Also calculate the mass of water in the cake.

Deriving the flow through the filter

Our standard equation for fluid flow:

$$\frac{1}{A} \cdot \frac{dV}{dt} = v = \frac{Q}{A}$$

for a given velocity v, and volumetric feed flow rate, Q.

But, from the Carmen-Kozeny equation:

$$\frac{-\Delta P_c}{L_c} = \frac{k_1 \mu v (1-\epsilon)^2 S_0^2}{\epsilon^3}$$

$$v = \frac{(-\Delta P_c) (\epsilon)^3}{(\mu)(k_1)(L_c)(1-\epsilon)^2(S_0^2)}$$
from our definition for C_S we can solve for L_c

$$L_c = \frac{C_S V}{A(1-\epsilon) \rho_p}$$

$$\frac{(-\Delta P_c) (A)(1-\epsilon)(\epsilon)^3(\rho_p)}{(\mu)(C_S)(V)(1-\epsilon)(k_1) (1-\epsilon)(S_0^2)} = \frac{-\Delta P_c}{\mu C_S V \alpha / A}$$

The general filtration equation

$$\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_c}{\mu C_S V \alpha / A}$$

 C_S = slurry concentration [(kg dry solids)/(m³ filtrate)] α = specific cake resistance [m.kg⁻¹]

All aspects of engineering obey this general law:

$$J = \text{flux} = \frac{\text{transfer rate}}{\text{transfer area}} = \frac{\text{driving force}}{\text{resistance}}$$

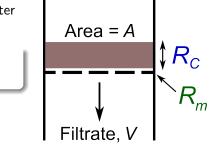
including the filtration equation:
$$\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_c}{\mu C_S V \alpha / A}$$
$$\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_c}{\mu R_c}$$
$$R_c = \text{resistance due to the cake} = \frac{C_S V \alpha}{A} \quad [\text{m}^{-1}]$$

18

Resistance due to the filter medium

In a similar way, we can define the filter medium's resistance:

 $\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_m}{\mu R_m}$



$-\Delta P_m$	=	pressure drop across the medium	[Pa]
Rm	=	resistance due to the filter medium	$[m^{-1}]$

$$R_m =$$
 resistance due to the filter medium [m]

Notes:

- From a practical standpoint, R_m is empirical for the given filter
- We wrap up all other minor resistances into R_m also (e.g. pipe flow into/out of filter)
- The flux through the filter cake is exactly the same as through the medium
- After filtration gets started, we very often have $R_m \ll R_c$

Bringing it all together

As with resistances in series (you learned in Physics I), we have:

$$\frac{1}{A} \cdot \frac{dV}{dt} = \left(\frac{-\Delta P_m}{\mu R_m} \text{ add with } \frac{-\Delta P_c}{\mu R_c}\right) = \frac{-\Delta P_{\text{tot}}}{\mu (R_m + R_c)}$$

this is called the general filtration equation.

$$egin{array}{rcl} R_c &=& ext{resistance due to the cake} & [m^{-1}] \ R_m &=& ext{resistance due to the medium} & [m^{-1}] \ -\Delta P_{ ext{tot}} &=& ext{total pressure drop} = -(\Delta P_c + P_m) & [ext{Pa}] \end{array}$$

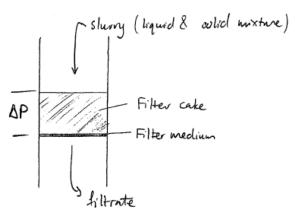
Questions

How would you use this equation?

$$\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_{\text{tot}}}{\mu \left(R_m + R_c \right)}$$

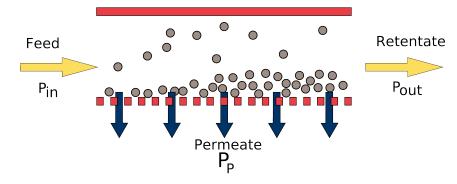
- 1. to determine the medium resistance?
- 2. to determine the cake resistance?
- 3. to find the utility cost of operating the filter?
- 4. to predict the flow for a given filter when your boss wants a higher throughput?

Cake filtration



- most widely applied
- functions only when particles have been trapped on the medium, forming a bed/cake
- the cake is the filtering element, not the medium
- medium's pores are larger than particles often
- e.g. filter press, rotary vacuum drum filter

Cross-Flow Filtration (TFF)



- ► TFF = tangential flow filtration (parallel to medium)
- used with gel-like or compressible substances
- pores are smaller than particles
- used when absolute exclusion is essential
- inlet flow of suspension provides shear to limit cake build-up
- reduces cake resistance, R_c

Basic filtration equation recap

$$\frac{1}{A} \cdot \frac{dV}{dt} = \frac{-\Delta P_{\text{tot}}}{\mu \left(R_m + C_5 V \alpha / A \right)} = \frac{-\Delta P_{\text{tot}}}{\mu \left(R_m + R_c \right)}$$

- which entries in the equation are a function of t?
- which entries in the equation are a function of V?

How do we determine cake resistance α ?

Recall:

$$\alpha = \frac{(k_1)(1-\epsilon)(S_0^2)}{(\epsilon)^3(\rho_p)}$$

- Measuring S_0 is difficult for irregular solids
- ► e changes depending on many factors (surface chemistry, upstream processing)
- Is e constant over time? What does it change with?
- α will also change as a function of ΔP

• So we let
$$\alpha = \alpha_0 (-\Delta P)^f$$

Constant pressure (batch) filtration

$$\frac{1}{A} \cdot \frac{d\mathbf{V}}{dt} = \frac{-\Delta P_{\text{tot}}}{\mu \left(R_m + \mathbf{V}C_S \alpha / A\right)} = \frac{-\Delta P_{\text{tot}}}{\mu \left(R_m + R_c\right)}$$

Invert both sides, separate, divide by A

$$A \cdot \frac{dt}{dV} = \frac{\mu (R_m + V C_S \alpha / A)}{-\Delta P_{\text{tot}}}$$
$$\frac{dt}{dV} = \frac{\mu}{A(-\Delta P_{\text{tot}})} R_m + \frac{\mu C_S \alpha}{A^2 (-\Delta P_{\text{tot}})} V$$
$$\frac{dt}{dV} = B + K_p V$$
$$\int_0^t dt = \int_0^V (B + K_p V) dV$$
$$t = BV + \frac{K_p V^2}{2}$$

 $B = \frac{\mu}{A(-\Delta P_{\text{tot}})} R_m \quad [\text{s.m}^{-3}] \quad \text{and} \quad K_p = \frac{\mu C_S \alpha}{A^2 (-\Delta P_{\text{tot}})} \quad [\text{s.m}^{-6}]$

Constant pressure (batch) filtration

$$t = BV + \frac{K_p V^2}{2}$$

Practical matters:

- how do we get constant $-\Delta P$?
- which type of equipment has a constant pressure drop?
- what is the expected relationship between t and V?
- Plot it for a given batch of slurry.
- If $-\Delta P$ is constant, then ϵ is likely constant, and so is α

Example

A water-based slurry of mineral is being filtered under vacuum, with a controlled pressure drop of 38 kPa, through a filter paper of 0.07 m². The slurry is at 24 kg solids per m³ fluid. Use $\mu = 8.9 \times 10^{-4}$ Pa.s and the following data:

V [L]	t [s]	<i>t/V</i> [s/L]
0.5	19	37
1	38	38
2	95	48
3	178	60
4	280	70

- 1. plot a rough sketch of x = V against y = t/V
- 2. read off the intercept and slope
- 3. calculate medium resistance, R_m [Ans: $8.11 \times 10^{10} \text{m}^{-1}$]
- 4. calculate specific cake resistance, α [Ans: 1.87 $\times\,10^{11} \rm m.kg^{-1}]$
- 5. cake resistance R_c at t = 280 s [Ans: $2.56 \times 10^{11} \text{m}^{-1}$]

Pressure dependence of α

Recall: $\alpha = \alpha_0 (-\Delta P)^f$

- We can find tables of α_0 and f for various solids
- But they almost will never match our situation

Finding the α value as a function of pressure drop:

- 1. Repeat the example above at several different $-\Delta P$ levels
- 2. Calculate α at each $-\Delta P$ (see example above) 3. Plot $x = (-\Delta P)$ against $y = \alpha$ (expected shape?)
- 4. Take logs on both sides of equation:

$$\ln\left(\alpha\right) = \ln\left(\alpha_{0}\right) + f\ln\left(-\Delta P\right)$$

Note: if f = 0 the cake is called an "incompressible cake"

Constant rate filtration

At a **constant rate**, i.e. $\frac{dV}{dt} = \text{constant}$

$$\frac{1}{A}\frac{dV}{dt} = \frac{1}{A}\frac{V}{t} = \frac{Q}{A} = \frac{-\Delta P}{\mu\left(R_m + C_S V \alpha / A\right)}$$

We can solve the equations for $-\Delta P$

$$-\Delta P = \frac{\mu R_m V}{At} + \frac{\mu C_s \alpha V^2}{t \cdot A^2}$$
$$-\Delta P = \frac{\mu R_m Q}{A} + \frac{\mu C_s \alpha Q^2}{A^2} t$$

- For many processes, the constant rate portion is fairly short
- Occurs at the start of filtration, where a plot of x = (t) against y = (−ΔP) is linear
- Then we settle into constant pressure mode
- That's the part we have focused on earlier

Example continued

$$t = BV + \frac{K_p V^2}{2}$$
 $B = \frac{\mu}{A(-\Delta P_{tot})} R_m$ and $K_p = \frac{\mu C_S \alpha}{A^2 (-\Delta P_{tot})}$

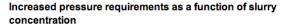
Example continued

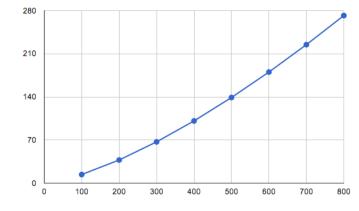
Suppose our prior lab experiments determined that $\alpha = 4.37 \times 10^9 (-\Delta P)^{0.3}$, with $-\Delta P$ in Pa and α in SI units. Now we operate a plate and frame filter press at $-\Delta P$ of 67 kPa,

with solids slurry content of $C_s = 300 \frac{\text{kg dry solids}}{\text{m}^3 \text{ filtrate}}$. The cycle time that the filter actually operates is 45 minutes (followed by 15 minutes for cleaning). Based on a simple mass-balance, the company can calculate that 8.5 m³ of filtrate will be produced.

- 1. Calculate the area required.
- 2. If the slurry concentration had to double (still the same volume of filtrate), what would the required pressure drop have to be to maintain the same cycle time?
- 3. Create a plot of the volume of filtrate leaving the press as a function of time, *t*.

Pressure requirements change with concentration of slurry





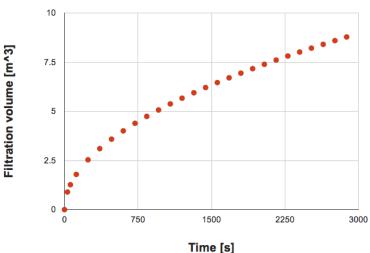
Slurry concentration [kg/m^3]

A = 81 m² stays fixed

Pressure required [kPa]

t = 2700 s stays fixed

Volume of filtrate produced against time



Filtrate volume against time

• $A = 81 \text{ m}^2$ stays fixed

Research the following topics:

- Variable rate filtration: pressure and flow rate both vary along the characteristic centrifugal pump curve
- Filtering centrifuge (combine the topics from the last 2 weeks)