Fouling

- Process feed pretreatment is important.
- e.g. in bio area: prefiltration, pasteurisation to destroy bacteria, or adjust pH to prevent protein precipitation
- Backflushing mostly restores permeation rate (opens pores)
- Can also use pulsated/oscillating feed flows
- Consider adding tube inserts

- ▶ Inject air: sparging with oxygen or nitrogen
- Oscillating electrical field works on certain feeds
- Chemical cleaning is eventually required [long time], e.g.:
 - flush with filtered water
 - recirculate/back-flush with a cleaning agent at high temperature
 - rinse to remove the cleaning agent
 - sterilize by recirculating weak chlorine solution at high temps
 - flushing with water to remove sterilizing solution

Video

http://www.youtube.com/watch?v=YIMGZWmh_Mw: How spiral membranes are made

Reverse osmosis

- One the most requested topics (start of the term!)
- ▶ One of the largest membrane markets by \$ size
 - 1. Dialysis
 - 2. Reverse osmosis (water treatment)
- What is osmosis? [Greek = "push"]
- ► Then we look at reverse osmosis (RO)
- Applications of RO
- Modelling RO

Osmosis principle

Osmosis principle

Reverse osmosis principle

(Reverse) Osmosis principle

- ▶ Assume solute barely passes through membrane $(C_p \approx 0)$
- but solvent passes freely: this is why we call it a semipermeable membrane
- Chemical potential drives pure solvent (water) to dilute the solute/solvent (mixture).
- ▶ This *solvent flux* continues until equilibrium is reached
 - solvent flow to the left equals solvent flow to the right
 - results in a pressure difference (head)
 - called the *osmotic pressure* = π [Pa]
 - ▶ a thermodynamic property $\neq f(membrane)$
 - ▶ a thermodynamic property = f(fluid and solute properties), e.g. temperature, concentration, pressure

(Reverse) Osmosis principle

- Osmosis in action:
 - trees and plants to bring water to the cells in upper branches
 - killing snails by placing salt on them
 - why freshwater fish die in salt water and vice versa
 - try at home: place peeled potato in very salty water
- If you exceed osmotic pressure you reverse the solvent flow
- Called "reverse osmosis"
- ▶ Net driving force in this illustration

Typical values of osmotic press

For dilute solutions

$$\pi \approx \frac{nRT}{V_m} = CRT$$

_		
π	[atm]	osmotic pressure
n	[mol]	mols of ions : e.g. Na^+ and Cl^-
R	$[m^3.atm.K^{-1}.mol^{-1}]$	gas law constant: $8.2057 imes 10^{-5}$
V_m	$[m^3]$	volume of solvent associated with solute
T	[K]	temperature
C	[mol of ions per m ³]	generic concentration

Example

Prove to yourself: 0.1 mol (\sim 1 teaspoon) of NaCl dissolved in 1 L of water at 25°C is **4.9 atm**!

- that's almost 500 kPa
- ▶ or almost 50m of head for 5.8 g NaCl in a litre of water
- (recall: 1 atm \approx 10 m of water height)

Other osmotic values

The previous equation is an approximation.

Some actual values:

Substance	Osmotic pressure [atm]
Pure water	0.0
0.1 mol NaCl in 1 L water	4.56
2.0 mol NaCl in 1 L water	96.2
Seawater [3.5 wt% salts]	25.2

- Driving force in membrane separation is pressure difference
- $\Delta P = \pi$ implies we only counteract the osmotic pressure
- Reverse osmosis occurs when we increase $\Delta P > \pi$
- ▶ So the net useful driving force applied: $\Delta P \pi$
- ▶ Ultrafiltration ΔP was 0.1 to 1.0 MPa (10 atm) typically
- ▶ RO: typical ΔP values: 2.0 MPa to 8.0 MPa, even 10.5 MPa

Let's be a little more accurate

- The solute (salt) passes through the membrane to the permeate side
- $C_p \neq 0$
- ▶ There is an osmotic pressure, π_{perm} back into the membrane.
- Correct, net driving force = $\Delta P \Delta \pi$
 - $ightharpoonup \Delta P$ is the usual TMP we measure
 - $\Delta \pi = \pi_{\text{feed}} \pi_{\text{perm}}$
 - $ightharpoonup \Delta \pi = C_{\text{ions,feed}}RT_{\text{feed}} C_{\text{ions,perm}}RT_{\text{perm}}$
 - Even more correctly: $\Delta \pi = C_{\text{ions,wall}} RT_{\text{wall}} C_{\text{ions,perm}} RT_{\text{perm}}$

Key point

There's a natural limitation here: what if we try to recover too much solvent?

Widest application for RO: desalination

Some quotes:

- "McIlvaine forecasts that world RO equipment and membrane sales will reach \$5.6 billion (USD) in 2012, compared to \$3.8 billion in 2008 (actual)."
- ▶ "Depleting water supplies, coupled with increasing water demand, are driving the global market for desalination technology, which is expected to reach \$52.4 billion by 2020, up 320.3% from \$12.5 billion in 2010. According to a recent report from energy research publisher SBI Energy, membrane technology reverse osmosis will see the largest growth, reaching \$39.46 billion by 2020."

Industrial applications of RO

- demineralization of industrial water before ion exchange
- not primary aim, but RO membranes retain > 300 Dalton organics
- ultrahigh-purity water
 - laboratories
 - kidney dialysis
 - microelectronic manufacturing
 - pharmaceutical manufacturing (purified water)
- ▶ tomato, citrus, and apple juice dewatering [~ 4.5 c/L; 1995]
- dealcoholization of wine and beer to retain flavour in the retentate
- other: keep antifreeze, paint, dyes, PAH, pesticides in retentate; discharge permeate to municipal wastewater

Salt-water reverse osmosis example

- Larnaca, Cyprus [island state near Greece/Turkey]
- ▶ Desalination plant: Build, Own, Operate, and Transfer
- ▶ 21.5 million m³ per year
- Seawater intake → flocculation and filtration [why?] → RO
 → chemical dosing → chlorination
- ► Energy recovery of ΔP (see http://www.youtube.com/watch?v=M3mpJysa6zQ: novel

RO costs [Perry's; 8ed], 1992

TABLE 20-23 Representative RO Process Costs

Costs	Seawater
Operating conditions Inlet pressure Flux Conversion	6.9 MPa 25 LMH° 40%
Total cost, \$/1000 gal Capital cost Operating cost	4.7 2.1 2.6
Total capital cost, \$/(gal/day) Direct costs Equipment Indirect costs	4.5 3.7 3.3 0.8
Total operating cost, \$/1000 gal Energy Membrane replacement Chemicals Labor	2.6 1.6 0.4 0.2 0.3
Other	0.3

Household RO cost:

▶ \$ 0.015 to \$0.07/L