Difference between revisions of "Liquid-liquid extraction - 2014"

From Separation Processes: 4M3
Jump to navigation Jump to search
Line 142: Line 142:
Unfortunately, we don't have the equilibrium data, however, various samples of the 3 species were made, mixed, and when they came to equilibrium they were found to have the following compositions (each row gives the aqueous and organic phase compositions):
Unfortunately, we don't have the equilibrium data, however, various samples of the 3 species were made, mixed, and when they came to equilibrium they were found to have the following compositions (each row gives the aqueous and organic phase compositions):


[[Image:Adsorption-example-from-VLE-raw-data.png|900px]] <span style="color:#8822AA">''click image to enlarge''</span>
[[Image:Adsorption-example-from-VLE-raw-data.png|500px]]


Feel free to download and use [http://upload.wikimedia.org/wikipedia/commons/8/81/Ternary_plot_1.png this empty ternary diagram].  
Feel free to download and use [http://upload.wikimedia.org/wikipedia/commons/8/81/Ternary_plot_1.png this empty ternary diagram].  

Revision as of 19:09, 12 November 2014

Class date(s): 29 October 2014
Download video: Link [468 M]

Download video: Link [639 M]

Download video: Link [553 M]

Download video: Link [M]



References

Please use these references to read ahead, or for extra background reading on liquid-liquid extraction. In alphabetical order:

  • Ghosh, R. "Principles of Bioseparations Engineering", Chapter 7, McMaster (reserve)
  • Geankoplis, C.J. "Transport Processes and Separation Process Principles", Chapter 12 in 3rd and 4th edition, McMaster Libraries (reserve)
  • Perry's Chemical Engineers' Handbook, Chapter 15, Direct link (McMaster subscription)
  • Richardson and Harker, "Chemical Engineering, Volume 2", 5th edition, Chapter 13 ebook
  • Schweitzer, "Handbook of Separation Techniques for Chemical Engineers", Chapter 1.9, McMaster library
  • Seader, Henley and Roper, "Separation Process Principles", Chapter 8 in 2nd and 3rd edition McMaster Libraries (reserve)
Date Class number Topic Slides for class Video and audio files References and Notes
29 October 09B

Liquid liquid extraction overview

Slides

Video Audio

A comprehensive article on liquid-liquid extraction which describes the various units available.

04 November 10A

Liquid liquid extraction theory and calculations

Slides

Video Audio
  • The flowsheet for separating acetic acid from water using ethyl acetate solvent. This flowsheet has the mass flow rates, to help contrast it to distillation.
Acetic-acid-water-ethyl-acetate-flowsheet-Seader-3ed-p300.jpg click image to enlarge

[reference: Seader et al., p300]

05 November 10B

Liquid liquid extraction example calculations

Slides

Video Audio
07 November 10C

Liquid liquid extraction example calculations

Slides

Video Audio

Web links shown in the class:

11 November 11A

Liquid liquid extraction example calculations

Slides

Video Audio

These readings seem old, but they are still relevant. For example, the same principles are used in modern bioseparations.

  1. A reading on solvent extraction principles
  2. A general article on liquid liquid extractors.
  3. An interesting reading on safety in liquid-liquid extraction plants: a further reason for counter-current operations to minimize solvent use.

Exercise

A stream of acetic acid and water (also called diluent) is being fed in a counter current manner at 1000 kg/hour, in order to extract the acetic acid. The feed composition is 30 wt% acetic acid, and 70 wt% water.

The solvent is 99% pure IPE (isopropyl ether), and contains 1% acetic acid, at an inlet flow of 2500 kg/hour.

We desire the exiting raffinate stream to contain 5 wt% acetic acid.

  1. Find the number of equilibrium stages to achieve this separation (show all calculations).
  2. Calculate the exiting raffinate flow, and the exiting extract flow rate.

Unfortunately, we don't have the equilibrium data, however, various samples of the 3 species were made, mixed, and when they came to equilibrium they were found to have the following compositions (each row gives the aqueous and organic phase compositions):

Adsorption-example-from-VLE-raw-data.png

Feel free to download and use this empty ternary diagram.

See this YouTube video for the full solution..