
Latent Variable Methods Course

Learning from data

Instructor: Kevin Dunn
kevin.dunn@connectmv.com

http://connectmv.com

© Kevin Dunn, ConnectMV, Inc. 2011

Revision: 268:adfd compiled on 15-12-2011

©ConnectMV, 2011 1



Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0

Unported License. To view a copy of this license, please visit

http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

I to share - to copy, distribute and transmit the work

I to adapt - but you must distribute the new result under the
same or similar license to this one

I commercialize - you are allowed to create commercial
applications based on this work

I attribution - you must attribute the work as follows:
I “Portions of this work are the copyright of ConnectMV”, or
I “This work is the copyright of ConnectMV”

©ConnectMV, 2011 2

http://creativecommons.org/licenses/by-sa/3.0/


We appreciate:

I if you let us know about any errors in the slides

I any suggestions to improve the notes

I telling us if you use the slides, especially commercially, so we
can inform you of major updates

I emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd

©ConnectMV, 2011 3



Overview

Last class: lots of questions on:

I how is the PCA model calculated: loading directions

I outliers and their effect on the model

I how many components

You will be able to answer these questions yourself after today’s
class.

©ConnectMV, 2011 4



Food texture example

5 quality attributes are measured from pastries:

1. Percentage oil

2. Density

3. Crispiness measurement: from 7 (soft) to 15 (crispy)

4. Fracture angle

5. Hardness: force required before it breaks

©ConnectMV, 2011 5



Example: Pre-processing

Pre-processing the data: center and scale

I Centering vector: [17.2, 2857.6, 11.5, 20.9, 128.2]
I Scaling vector (divide by standard deviation):

[1.6, 124.5, 1.78, 5.47, 31.1]

I Centering: xk,center = xk,raw −mean (xk,raw)

I Scaling: xk =
xk,center

standard deviation (xk,center)
I Does not change relationships between variables.

©ConnectMV, 2011 6



Food texture: raw data

©ConnectMV, 2011 7



Food texture: centered and scaled data

©ConnectMV, 2011 8



Food texture: Variance explained

I PC1: explains 60.6%

I PC2: explains an additional 25.9% for a total of 86.5%

Each variable has an R2 value. After 2 components they are:

1. Percentage oil: 81.2%

2. Density: 86.0%

3. Crispy: 90.9%

4. Fracture: 83.4%

5. Hardness: 91.0%

©ConnectMV, 2011 9



Food texture: loading p1

Loadings = direction vector

pT
1 =

[
0.46, −0.48, 0.53, −0.50, 0.15

]
t1,i = 0.46xoil − 0.48xdensity + 0.53xcrispy − 0.50xfract + 0.15xhard

where:

I xoil =
xoil, raw −mean(xoil, raw)

standard deviation(xoil,raw)
I etc for the other variables

©ConnectMV, 2011 10



Example: loading p1

t1,i = 0.46xoil − 0.48xdensity + 0.53xcrispy − 0.50xfract + 0.15xhard

I A high t1 value:

I A low t1 value:

©ConnectMV, 2011 11



Example: loadings

The second loading vector:

I Interpretation?

I Explains 26% of additional variability
I Is orthogonal (independent) to p1. This means ...

I can adjust process conditions for hardness without affecting
other pastry properties

©ConnectMV, 2011 12



Replicate t1 score for pastry B758

Observation B758 (row 36): t1 = 3.61 (value from software)

Raw data:

I Oil = 21.2%

I Density = 2570

I Crisp = 14

I Fracture = 13

I Hardness = 105

©ConnectMV, 2011 13



Replicate t1 score for pastry B758

I t1 = 0.46xoil − 0.47xdensity + 0.53xcrispy − 0.50xfract + 0.15xhard

I xoil = (21.2− 17.2)/1.59 = 2.516
I xdensity = (2570− 2857)/124.5 = −2.305
I xcrisp = (14− 11.52)/1.78 = 1.393
I xfracture = (13− 20.9)/5.47 = −1.44
I xhardness = (105− 128)/31.1 = −0.740

t1 = +0.46(2.516)
−0.47(−2.305)
+0.53(1.393)
−0.50(−1.44)
+0.15(−0.740) = 3.59

t1 = 1.16 + 1.08 + 0.738 + 0.72− 0.11 = 3.59

©ConnectMV, 2011 14



Overview: how is a PCA model calculated?

We will look at 3 ways today:

I Eigenvalue decomposition

I Singular value decomposition
I Non-linear iterative partial least-squares (NIPALS) algorithm

I Used by most software packages

Why look at all the algorithms?

Each method highlights interesting properties of PCA

©ConnectMV, 2011 15



Optimization recap

Optimization problems are written in standard form:

©ConnectMV, 2011 16



PCA: optimization point of view

For PCA:
I What is a reasonable objective function?
I What are we searching for?
I Any constraints?

©ConnectMV, 2011 17



PCA: optimization derivation

Will be completed on the board. Brace yourselves for some math ...

I First component derivation

I Second component derivation

So what have we learnt?

©ConnectMV, 2011 18



PCA: optimization derivation

I PCA is the eigendecomposition of X′X

I Note that X′X is a real, symmetric matrix
I Eigendecomposition of a real, symmetric matrix:

I can always be calculated
I the eigenvectors are linearly independent (orthogonal)

I pi ⊥ pj for i 6= j

I the eigenvalues are all real and nonnegative
I which is good, because we showed that

eigenvalue λa = V(ta) >= 0
I we forced λ1 > λ2 > . . . > λA

I sum of all eigenvalues =
a=K∑

a

λa = trace(X′X)

I for a centered X matrix, trace(X′X) = ssq(X)

I that’s the denominator used to calculate R2 = 1− Var(Ea)

Var(X)

©ConnectMV, 2011 19



PCA: optimization derivation

These 2 optimization problems are identical for PCA:

max t′ata
(Maximizing variance)

min ssq (Ea)
(Minimizing residual error)

Prove it to yourself.

©ConnectMV, 2011 20



Eigenvalue summary

For long and thin matrices (N > K ), compute the PCA model:

I loadings, pa, are the eigenvectors of X′X (a K × K matrix)

I once you have the eigenvectors, then ta = Xpa

I then calculate the predicted X̂A = t1p′1 + t2p′2 + . . . + tAp′A
I residuals = EA = X− X̂A

I eigenvalues are the variances of the scores, s2
a

I sum of all eigenvalues = trace(X′X) = Var(X)

I finally, calculate R2 = 1− Var(EA)

Var(X)

©ConnectMV, 2011 21



Eigenvalue summary

Alternatively for short and wide matrices where N < K :

I scaled version of ta = eigenvectors of XX′ (an N × N matrix)

I scaled loadings = pa = Xta
I rescale loadings: pa = pa

‖pa‖
I recalculate scores again: ta = Xpa (or just using the scaling

factors above)

©ConnectMV, 2011 22



Singular Value Decomposition (SVD)

I X = UΣV′ = TP′

I scores, T = UΣ and the loadings, P = V

©ConnectMV, 2011 23



Disadvantages of Eigendecomposition and SVD

These two approaches suffer the same drawbacks:

I cannot handle missing data

I both methods calculate all components at once, even though
we only require A � K

Further disadvantages of the eigendecomposition for large
matrices:

I calculating X′X can be difficult on large arrays

I also prone to numerical overflow for very large datasets

I we need to keep X available anyway to calculate the scores

I negates the intended benefit of the eigendecomposition

©ConnectMV, 2011 24



Any advantages?

I They teach us a lot about what PCA is doing

I All the properties of PCA can be derived from these
decompositions

I Are slightly more accurate since calculate error is spread over
all components*

* NIPALS algorithm error increases as we add more components.

©ConnectMV, 2011 25



NIPALS algorithm

I NIPALS: Non-linear iterative partial least squares algorithm

I NIPALS: Non-linear iterative projections using alternating least squares

I Why study it?
I insight into what the loadings and scores mean
I another look at orthogonality between components
I handles missing data
I used by all major software packages

©ConnectMV, 2011 26



NIPALS algorithm

I Start with X: preprocessed matrix of raw data

I More correctly, call it Xa=0 or just X0

I to indicate that no components have been calculated yet

I We will break the algorithm into steps.

For a = 1, 2, . . . A:

1. Select an arbitrary initial column for ta
2. In a while-loop, until convergence:

2.1 Regress columns from Xa−1 onto ta

2.2 Normalize the loadings
2.3 Regress rows from Xa−1 onto p′a

3. Deflate component from Xa−1 to calculate Xa

End

©ConnectMV, 2011 27



NIPALS algorithm

Step 1 Select an arbitrary initial column for ta

I Any column from X0

I A column of random numbers will also work
I Actually anything except a column of zeros works

©ConnectMV, 2011 28



NIPALS algorithm

Step 2.1 Regress every column from Xa−1 (called xk) onto ta
I regress xk onto ta (terminology: “regress a y onto an x”)

I store regression coefficient as entry in pk,a

I Recall LS for centered data:

ŷ = βx, and β̂ =
x′y

x′x

I In this case: pk,a =
t′axk

t′ata

©ConnectMV, 2011 29



NIPALS algorithm

Step 2.1

I Repeat regression for every column in Xa−1

I Can calculate regressions in one go:

p′a =
1

t′ata
· t′aXa−1

I ta is an N × 1 column vector
I Xa−1 is an N × K matrix
I pa is a K × 1 column vector

©ConnectMV, 2011 30



NIPALS algorithm

Step 2.2 Normalize the loadings

I p′a won’t have unit length (magnitude)

I Rescale it to magnitude 1.0

I p′a =
1√
p′apa

· p′a =
p′a
‖p′a‖

©ConnectMV, 2011 31



NIPALS algorithm

Step 2.3 Regress every row in X onto p′a
I regress xi onto p′a
I store regression coefficient as entry in ti ,a

I Recall LS for centered data:

ŷ = βx, and β̂ =
x′y

x′x

I ti ,a =
p′axi

p′apa

©ConnectMV, 2011 32



NIPALS algorithm

Step 2.3

I Repeat regression for every row in Xa−1

I In practice: ta =
1

p′apa
· Xa−1pa

I ta is an N × 1 column vector
I Xa−1 is an N × K matrix
I pa is an K × 1 column vector

©ConnectMV, 2011 33



NIPALS algorithm

Back to step 2. Have we converged?

I ta compared to ta from previous iteration

I Stop if change less than
√

eps ≈ 1.5× 10−8

I Could also compare change in pa to previous iteration

I Safety net: also stop if number of iterations > 300

At convergence:

I ta and pa jointly form the ath component

I Store them as columns in matrix T and P respectively

©ConnectMV, 2011 34



NIPALS algorithm

Finally, step 3 Deflate the Xa−1 matrix

I Deflation removes the part we can explain

I Ea = Xa−1 − tap′a
I Ea = residuals after fitting the ath component

I Then let Xa = Ea and repeat from step 1 for a + 1

I e.g. for a = 1: Xa−1 = X0 = preprocessed raw data

I e.g. for a = 2: X1 = residuals after 1 component = data
matrix used to calculate 2nd component

©ConnectMV, 2011 35



What happens at convergence?

Let’s review the regressions calculated on the last iteration:

I Step 2.1 Regress every column
from Xa−1 onto ta

I pk,a =
t′axk

t′ata
I What will regression look like for a

strong relationship?

I Weak/no relationship?

I Meaning of the loading pk,a should
be apparent now

I Regression can be used to predict:
x̂k = t′apk,a

On your own: interpret step 2.3 when we regress rows in Xa−1

onto pa

©ConnectMV, 2011 36



What happens after convergence?

After convergence of ta and pa:

I p′a =
t′aXa−1

t′ata
I Drop the “a” subscripts for now; transpose the entire equation

I Rewrite step 2.1 as: p =
X′t

t′t

I Rewrite step 2.3 as: t =
Xp

p′p
I Note that p′p = 1.0

I Substitute t into equation for p gives p =
X′Xp

t′t
I Rearrange to (X′X− t′tIK )p = 0 where IK is a K × K

identity matrix

This shows (again) that:
I p is an eigenvector of X′X
I The eigenvalue is λ = t′t, which we interpret/know as the

variance of t
©ConnectMV, 2011 37



NIPALS notes

I Convergence is fast if the eigenvalues are well separated

I Two close eigenvalues leads to very slow convergence,
followed by very fast convergence for the next one

I The algorithm handles missing data (next)

©ConnectMV, 2011 38



NIPALS algorithm: concept of handling missing data

Missing values are ignored
and do not influence the
slope calculation.

More details:
I Nelson, Taylor, MacGregor (paper 68)
I Arteaga and Ferrer (paper 20)

©ConnectMV, 2011 39

http://literature.connectmv.com/item/68
http://literature.connectmv.com/item/20


Outliers

Discussion

What will an outlier do to a PCA model?

©ConnectMV, 2011 40



NIPALS summary

Advantages:
I Calculates one component at a time
I Handles missing data
I It converges (sometimes slowly)

Disadvantages:
I Round off errors may accumulate if you go very far (not

usually a problem on modern computers)

Notes:
I Also called the Power algorithm for computing eigenvalues of

a square matrix
I Excellent on large data sets (large N and large K )
I Google used this algorithm for their first search engine (called

PageRank)
I http://ilpubs.stanford.edu:8090/422/
I Ipsen, Ilse, and Wills, “Analysis and Computation of Google’s PageRank”, 7th IMACS

International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto,

Canada, 5-8 May 2005

©ConnectMV, 2011 41

http://ilpubs.stanford.edu:8090/422/


Flipping signs

In NIPALS, SVD or eigendecompositions:

I X̂1 = t1p′1 = (−t1)(−p′1)

I Both the scores and loadings may flip sign

I Depends on the computer, initial guesses, algorithm
implementation

I Not a problem: model interpretation is still consistent

I Not a problem: model’s performance is identical

Just be aware when comparing results from different
users/software/computers.

©ConnectMV, 2011 42



For next class

1. Read the following 2 papers for an overview of process
monitoring

I Kresta, MacGregor and Marlin (paper 9)
I Kourti and MacGregor (paper 31)

2. Next class will cover
I using PCA for process monitoring
I various contribution plots from PCA models
I how are the limits derived for PCA models

©ConnectMV, 2011 43

http://literature.connectmv.com/item/9
http://literature.connectmv.com/item/31

