Latent Variable Methods Course Learning from data

Instructor: Kevin Dunn
kevin.dunn@connectmv.com
http://connectmv.com

© Kevin Dunn, ConnectMV, Inc. 2011

Revision: 268:adfd compiled on 15-12-2011

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to create commercial applications based on this work
- attribution you must attribute the work as follows:
 - ► "Portions of this work are the copyright of ConnectMV", or
 - "This work is the copyright of ConnectMV"

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes
- telling us if you use the slides, especially commercially, so we can inform you of major updates
- emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd

Overview

Last class: lots of questions on:

- ▶ how is the PCA model calculated: *loading directions*
- outliers and their effect on the model
- how many components

You will be able to answer these questions yourself after today's class.

Food texture example

5 quality attributes are measured from pastries:

- 1. Percentage oil
- 2. Density
- 3. Crispiness measurement: from 7 (soft) to 15 (crispy)
- 4. Fracture angle
- 5. Hardness: force required before it breaks

Example: Pre-processing

Pre-processing the data: center and scale

- ► Centering vector: [17.2, 2857.6, 11.5, 20.9, 128.2]
- Scaling vector (divide by standard deviation):[1.6, 124.5, 1.78, 5.47, 31.1]

- ► Centering: $\mathbf{x}_{k,\text{center}} = \mathbf{x}_{k,\text{raw}} \text{mean}(\mathbf{x}_{k,\text{raw}})$
- ► Scaling: $\mathbf{x}_k = \frac{\mathbf{x}_{k,\text{center}}}{\text{standard deviation}(\mathbf{x}_{k,\text{center}})}$
- Does not change relationships between variables.

Food texture: raw data

Food texture: centered and scaled data

Food texture: Variance explained

- ► PC1: explains 60.6%
- ▶ PC2: explains an additional 25.9% for a total of 86.5%

Each variable has an R^2 value. After 2 components they are:

1. Percentage oil: 81.2%

2. Density: 86.0%

3. Crispy: 90.9%

4. Fracture: 83.4%

5. Hardness: 91.0%

Food texture: loading p_1

Loadings = direction vector

$$\begin{aligned} \mathbf{p_1^T} &= \begin{bmatrix} 0.46, & -0.48, & 0.53, & -0.50, & 0.15 \end{bmatrix} \\ t_{1,i} &= 0.46x_{\text{oil}} - 0.48x_{\text{density}} + 0.53x_{\text{crispy}} - 0.50x_{\text{fract}} + 0.15x_{\text{hard}} \\ \text{where:} \end{aligned}$$

- $> x_{\text{oil}} = \frac{x_{\text{oil, raw}} \text{mean}(x_{\text{oil, raw}})}{\text{standard deviation}(x_{\text{oil, raw}})}$
- etc for the other variables

Example: loading p_1

$$t_{1,i} = 0.46x_{\mathsf{oil}} - 0.48x_{\mathsf{density}} + 0.53x_{\mathsf{crispy}} - 0.50x_{\mathsf{fract}} + 0.15x_{\mathsf{hard}}$$

- ightharpoonup A high t_1 value:
- ▶ A low t₁ value:

Example: loadings

The second loading vector:

- Interpretation?
- Explains 26% of additional variability
- ▶ Is orthogonal (independent) to p_1 . This means ...
 - can adjust process conditions for hardness without affecting other pastry properties

Replicate t_1 score for pastry B758

Observation B758 (row 36): $t_1 = 3.61$ (value from software)

Raw data:

- ightharpoonup Oil = 21.2%
- ► Density = 2570
- ► Crisp = 14
- ► Fracture = 13
- ► Hardness = 105

Replicate t_1 score for pastry B758

$$t_1 = 0.46x_{\text{oil}} - 0.47x_{\text{density}} + 0.53x_{\text{crispy}} - 0.50x_{\text{fract}} + 0.15x_{\text{hard}}$$

$$x_{oil} = (21.2 - 17.2)/1.59 = 2.516$$

$$x_{\text{density}} = (2570 - 2857)/124.5 = -2.305$$

$$x_{\text{crisp}} = (14 - 11.52)/1.78 = 1.393$$

$$x_{\text{fracture}} = (13 - 20.9)/5.47 = -1.44$$

$$x_{\text{hardness}} = (105 - 128)/31.1 = -0.740$$

$$t_1 = +0.46(2.516) -0.47(-2.305) +0.53(1.393) -0.50(-1.44) +0.15(-0.740) = 3.59$$

$$t_1 = 1.16 + 1.08 + 0.738 + 0.72 - 0.11 = 3.59$$

Overview: how is a PCA model calculated?

We will look at 3 ways today:

- Eigenvalue decomposition
- Singular value decomposition
- ▶ Non-linear iterative partial least-squares (NIPALS) algorithm
 - Used by most software packages

Why look at all the algorithms?

Each method highlights interesting properties of PCA

Optimization recap

Optimization problems are written in standard form:

ma	X	φ		
subje 	ect t	<i>o</i> :		

PCA: optimization point of view

max	$oldsymbol{arphi}$	
subjec	et to:	

For PCA:

- ▶ What is a reasonable objective function?
- ▶ What are we searching for?
- Any constraints?

PCA: optimization derivation

Will be completed on the board. Brace yourselves for some math ...

- First component derivation
- Second component derivation

So what have we learnt?

PCA: optimization derivation

- PCA is the eigendecomposition of X'X
- ▶ Note that X'X is a real, symmetric matrix
- Eigendecomposition of a real, symmetric matrix:
 - can always be calculated
 - the eigenvectors are linearly independent (orthogonal)
 - $p_i \perp p_j \text{ for } i \neq j$
 - the eigenvalues are all real and nonnegative
 - which is good, because we showed that eigenvalue $\lambda_a = \mathcal{V}(\mathbf{t}_a) >= 0$
 - we forced $\lambda_1 > \lambda_2 > \ldots > \lambda_A$ a = K
 - sum of all eigenvalues = $\sum_{a}^{b} \lambda_{a} = \text{trace}(\mathbf{X}'\mathbf{X})$
 - for a centered \mathbf{X} matrix, trace($\mathbf{X}'\mathbf{X}$) = ssq(\mathbf{X})
 - ▶ that's the denominator used to calculate $R^2 = 1 \frac{\text{Var}(\mathbf{E}_a)}{\text{Var}(\mathbf{X})}$

PCA: optimization derivation

These 2 optimization problems are identical for PCA:

max
$$\mathbf{t}_a'\mathbf{t}_a$$
 (Maximizing variance)

 $ssq(\mathbf{E}_a)$ min (Minimizing residual error)

Prove it to yourself.

Eigenvalue summary

For long and thin matrices (N > K), compute the PCA model:

- ▶ loadings, p_a , are the eigenvectors of X'X (a $K \times K$ matrix)
- ightharpoonup once you have the eigenvectors, then $\mathbf{t}_a = \mathbf{X}\mathbf{p}_a$
- lacktriangle then calculate the predicted $\hat{f X}_A={f t}_1{f p}_1'+{f t}_2{f p}_2'+\ldots+{f t}_A{f p}_A'$
- ightharpoonup residuals $= \mathbf{E}_A = \mathbf{X} \widehat{\mathbf{X}}_A$
- eigenvalues are the variances of the scores, s_a^2
- ightharpoonup sum of all eigenvalues = trace($\mathbf{X}'\mathbf{X}$) = $Var(\mathbf{X})$
- finally, calculate $R^2 = 1 \frac{\mathsf{Var}(\mathbf{E}_A)}{\mathsf{Var}(\mathbf{X})}$

Eigenvalue summary

Alternatively for short and wide matrices where N < K:

- ▶ scaled version of \mathbf{t}_a = eigenvectors of \mathbf{XX}' (an $N \times N$ matrix)
- ightharpoonup scaled loadings = $m p_a = Xt_a$
- rescale loadings: $\mathbf{p}_a = \frac{\mathbf{p}_a}{\|\mathbf{p}_a\|}$
- recalculate scores again: $\mathbf{t}_a = \mathbf{X}\mathbf{p}_a$ (or just using the scaling factors above)

Singular Value Decomposition (SVD)

- $\triangleright X = U\Sigma V' = TP'$
- ightharpoonup scores, $m f T = f U f \Sigma$ and the loadings, m f P = f V

Disadvantages of Eigendecomposition and SVD

These two approaches suffer the same drawbacks:

- cannot handle missing data
- ightharpoonup both methods calculate all components at once, even though we only require $A \ll K$

Further disadvantages of the eigendecomposition for *large* matrices:

- calculating X'X can be difficult on large arrays
- also prone to numerical overflow for very large datasets
- we need to keep X available anyway to calculate the scores
- negates the intended benefit of the eigendecomposition

Any advantages?

- ▶ They teach us a lot about what PCA is doing
- ▶ All the properties of PCA can be derived from these decompositions
- Are slightly more accurate since calculate error is spread over all components*
- * NIPALS algorithm error increases as we add more components.

- ▶ NIPALS: Non-linear iterative partial least squares algorithm
- ▶ NIPALS: Non-linear iterative projections using alternating least squares
- ▶ Why study it?
 - insight into what the loadings and scores mean
 - another look at orthogonality between components
 - handles missing data
 - used by all major software packages

- ▶ Start with **X**: preprocessed matrix of raw data
- ▶ More correctly, call it $X_{a=0}$ or just X_0
- ▶ to indicate that no components have been calculated yet

We will break the algorithm into steps.

For a = 1, 2, ... A:

- 1. Select an arbitrary initial column for \mathbf{t}_a
- 2. In a while-loop, until convergence:
 - 2.1 Regress columns from \mathbf{X}_{a-1} onto \mathbf{t}_a
 - 2.2 Normalize the loadings
 - 2.3 Regress rows from \mathbf{X}_{a-1} onto \mathbf{p}'_a
- 3. Deflate component from \mathbf{X}_{a-1} to calculate \mathbf{X}_a

End

Step 1 Select an arbitrary initial column for t_a

- ▶ Any column from X₀
- A column of random numbers will also work
- Actually anything except a column of zeros works

Step 2.1 Regress every column from X_{a-1} (called x_k) onto t_a

- regress \mathbf{x}_k onto \mathbf{t}_a (terminology: "regress a \mathbf{y} onto an \mathbf{x} ")
- ightharpoonup store regression coefficient as entry in $p_{k,a}$

Recall LS for centered data:

$$\hat{\mathbf{y}} = eta \mathbf{x}$$
, and $\widehat{eta} = rac{\mathbf{x}'\mathbf{y}}{\mathbf{x}'\mathbf{x}}$

lacktriangle In this case: $p_{k,a}=rac{\mathbf{t}_a'\mathbf{x}_k}{\mathbf{t}_a'\mathbf{t}_a}$

Step 2.1

- ▶ Repeat regression for every column in X_{a-1}
- Can calculate regressions in one go:

$$\mathbf{p}_a' = \frac{1}{\mathbf{t}_a' \mathbf{t}_a} \cdot \mathbf{t}_a' \mathbf{X}_{a-1}$$

- \mathbf{t}_a is an $N \times 1$ column vector
- **X**_{a-1} is an $N \times K$ matrix
- \mathbf{p}_a is a $K \times 1$ column vector

Step 2.2 Normalize the loadings

- ▶ **p**'_a won't have unit length (magnitude)
- ▶ Rescale it to magnitude 1.0

Step 2.3 Regress every row in **X** onto \mathbf{p}'_a

- regress x_i onto p'_a
- ightharpoonup store regression coefficient as entry in $t_{i,a}$

Step 2.3

- ▶ Repeat regression for every row in X_{a-1}
- ▶ In practice: $\mathbf{t}_a = \frac{1}{\mathbf{p}_a'\mathbf{p}_a} \cdot \mathbf{X}_{a-1}\mathbf{p}_a$
 - \mathbf{t}_a is an $N \times 1$ column vector
 - **X**_{a-1} is an $N \times K$ matrix
 - **p**_a is an $K \times 1$ column vector

Back to **step 2**. Have we converged?

- ightharpoonup \mathbf{t}_a compared to \mathbf{t}_a from previous iteration
- ▶ Stop if change less than $\sqrt{\text{eps}} \approx 1.5 \times 10^{-8}$
- ightharpoonup Could also compare change in ho_a to previous iteration

► Safety net: also stop if number of iterations > 300

At convergence:

- **t**_a and \mathbf{p}_a jointly form the a^{th} component
- ▶ Store them as columns in matrix **T** and **P** respectively

Finally, step 3 Deflate the X_{a-1} matrix

- Deflation removes the part we can explain
- $\blacktriangleright \ \mathsf{E}_a = \mathsf{X}_{a-1} \mathsf{t}_a \mathsf{p}_a'$
- ightharpoonup $\mathbf{E}_a = \text{residuals } after \text{ fitting the } a^{\text{th}} \text{ component}$
- ▶ Then let $\mathbf{X}_a = \mathbf{E}_a$ and repeat from step 1 for a+1
- ▶ e.g. for a = 1: $\mathbf{X}_{a-1} = \mathbf{X}_0 = \text{preprocessed raw data}$
- ▶ e.g. for a = 2: $\mathbf{X}_1 = \text{residuals after 1 component} = \text{data}$ matrix used to calculate 2^{nd} component

What happens at convergence?

Let's review the regressions calculated on the last iteration:

- ▶ **Step 2.1** Regress every column from X_{a-1} onto t_a
- ▶ What will regression look like for a strong relationship?
- Weak/no relationship?
- ▶ Meaning of the loading $p_{k,a}$ should be apparent now
- Regression can be used to predict: $\hat{\mathbf{x}}_k = \mathbf{t}_2' p_k$

On your own: interpret step 2.3 when we regress rows in X_{a-1} onto p_a

What happens after convergence?

After convergence of \mathbf{t}_a and \mathbf{p}_a :

- ▶ Drop the "a" subscripts for now; transpose the entire equation
- Rewrite step 2.1 as: $\mathbf{p} = \frac{\mathbf{X}'\mathbf{t}}{\mathbf{t}'\mathbf{t}}$
- Rewrite step 2.3 as: $\mathbf{t} = \frac{\ddot{\mathbf{X}}\ddot{\mathbf{p}}}{\mathbf{p}'\mathbf{p}}$
- Note that $\mathbf{p}'\mathbf{p} = 1.0$
- ► Substitute **t** into equation for **p** gives $\mathbf{p} = \frac{\mathbf{X}'\mathbf{X}\mathbf{p}}{\mathbf{t}'\mathbf{t}}$
- ▶ Rearrange to $(\mathbf{X}'\mathbf{X} \mathbf{t}'\mathbf{t}\mathbf{I}_K)\mathbf{p} = \mathbf{0}$ where \mathbf{I}_K is a $K \times K$ identity matrix

This shows (again) that:

- ▶ **p** is an eigenvector of **X**′**X**
- ► The eigenvalue is $\lambda = \mathbf{t}'\mathbf{t}$, which we interpret/know as the variance of \mathbf{t}

NIPALS notes

- Convergence is fast if the eigenvalues are well separated
- ► Two close eigenvalues leads to very slow convergence, followed by very fast convergence for the next one
- ► The algorithm handles missing data (next)

NIPALS algorithm: concept of handling missing data

Missing values are ignored and do not influence the slope calculation.

More details:

- ▶ Nelson, Taylor, MacGregor (paper 68)
- Arteaga and Ferrer (paper 20)

Outliers

Discussion

What will an outlier do to a PCA model?

NIPALS summary

Advantages:

- Calculates one component at a time
- Handles missing data
- ▶ It converges (sometimes slowly)

Disadvantages:

 Round off errors may accumulate if you go very far (not usually a problem on modern computers)

Notes:

- Also called the Power algorithm for computing eigenvalues of a square matrix
- Excellent on large data sets (large N and large K)
- Google used this algorithm for their first search engine (called PageRank)
 - http://ilpubs.stanford.edu:8090/422/
 - ▶ Ipsen, Ilse, and Wills, "Analysis and Computation of Google's PageRank", 7th IMACS International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto, Canada, 5-8 May 2005

Flipping signs

In NIPALS, SVD or eigendecompositions:

- $\hat{\mathbf{X}}_1 = \mathbf{t}_1 \mathbf{p}'_1 = (-\mathbf{t}_1)(-\mathbf{p}'_1)$
- ▶ Both the scores and loadings may flip sign
- Depends on the computer, initial guesses, algorithm implementation
- Not a problem: model interpretation is still consistent
- ▶ Not a problem: model's performance is identical

Just be aware when comparing results from different users/software/computers.

For next class

- Read the following 2 papers for an overview of process monitoring
 - Kresta, MacGregor and Marlin (paper 9)
 - Kourti and MacGregor (paper 31)
- 2. Next class will cover
 - using PCA for process monitoring
 - various contribution plots from PCA models
 - how are the limits derived for PCA models