Latent Variable Methods Course Learning from data

Instructor: Kevin Dunn kevin.dunn@connectmv.com http://connectmv.com

© Kevin Dunn, ConnectMV, Inc. 2011

Revision: 269:35e2 compiled on 15-12-2011

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to create commercial applications based on this work
- attribution you must attribute the work as follows:
 - "Portions of this work are the copyright of ConnectMV", or
 - "This work is the copyright of ConnectMV"

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes
- telling us if you use the slides, especially commercially, so we can inform you of major updates
- emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 269:35e2

Data sources

- PCA considers a single data table (matrix)
- We will call it X

- N observations
- K variables
- What goes in the columns of X?
- What goes in the rows?

Visualization

How would you visualize such a data table?

For example: assume N = 300 and K = 50

- One column at a time (time-series, histograms, boxplot)
- One row at a time (e.g. spectral data)
- Scatterplot matrix, requires K(K-1)/2 pairs of scatterplots

What is PCA (Principal Components Analysis)?

Mathematical objective

PCA: find me the best summary of my data, X, with the fewest number of summary variables, called scores, T.

Objectives for this class

PCA model will calculate from \mathbf{X} :

- scores: T
- loadings: P

Objectives for this class

- Intuitive meaning of the scores, T and loadings, P and errors in a PCA model
- The interpretation of each of these
- How to start investigating a new data table

Time to break out the math

- ▶ Notation for scores: $t_{1,1}, t_{2,1}, \ldots, t_{N,1}, \ldots, t_{N,1}$
- ▶ Notation for loadings: $p_{1,1}, p_{2,1}, \ldots, p_{k,1}, \ldots, p_{K,1}$
- Length of a vector: ||a||

- 1. Data preprocessing
- 2. Geometric interpretation (hand waving explanation)
- 3. Analytical geometry (to understand the hand waving)
- 4. Algebraic approach (to formalize the notation)
- 5. Look at applying this all in software

Preprocessing by example

Raw data:

Preprocessing by example

Center and scale the raw data

Centering: $\mathbf{x}_{k,\text{center}} = \mathbf{x}_{k,\text{raw}} - \text{mean}(\mathbf{x}_{k,\text{raw}})$ Scaling: $\mathbf{x}_k = \frac{\mathbf{x}_{k,\text{center}}}{\text{standard deviation}(\mathbf{x}_{k,\text{center}})}$

Does not change relationships between variables

Geometric explanation of preprocessing

Geometric explanation of preprocessing

Calculate the mean of each variable (creates a "new" reference point in the swarm)

Geometric explanation of preprocessing

Project observations onto component (90 degrees) \dot{X}_3 1st component ConnectMV, 2011 17

What have we done here?

Broken X down into 2 parts:

projected points "on the plane"

residual distance "off the plane"

Mathematical derivation for PCA

Mathematical derivation for PCA

K individual terms add up (i.e. linear combination) to give t₁
Stack t_{i,1} values from *N* rows: T = XP

Interpreting $t_i = \mathbf{x}_i^T \mathbf{p}_1$

Given that:

- > values in \mathbf{x}_i^T are centred and scaled, and
- entries in \mathbf{p} are between -1 and +1

using

$$= x_{i,1}p_{1,1} + x_{i,2}p_{2,1} + \ldots + x_{i,k}p_{k,1} + \ldots + x_{i,K}p_{K,1}$$

how would you

- get a large positive value of t_{i,1}?
- get a large negative value of t_{i,1}?
- get a value of $t_{i,1} \approx 0$?
- What can you say about observation (row) 13 and 22 if $t_{13,1} \approx t_{22,1}$?

Score plots: interpretation

Clustering

Score plots: interpretation

Also look for:

- outliers
- patterns in the sequence order (if time-based row order)
- colour-code score plots by another variable (good/bad)
 We'll see more of these tips as we work with the software.

Key point: anything you would normally have done to visualize a column can be done with a score.

Mathematical derivation for PCA

We'll look at this in next class:

For now though:

- Columns that are related have similar loadings
- "Direction vectors" = "Loadings"
- ▶ Link between the real-world (K) and latent-variable world (A)

$$T = XP$$

$$(N \times A) = (N \times K)(K \times A)$$

Predicted values for each observation

In this case: "best" = "smallest error"

The residuals

Residuals for row *i* after extracting one component = $\mathbf{e}_{i,1}$

$$\mathbf{e}_{i,1}^{T} = \mathbf{x}_{i}^{T} - \hat{\mathbf{x}}_{i,1}^{T}$$
 (each is a $1 \times K$ vector)

Another way of stating this:
$$\mathbf{x}_i^T = \widehat{\mathbf{x}}_{i,1}^T + \mathbf{e}_{i,1}^T$$

 $\mathbf{x}_i^T = t_{i,1}\mathbf{p}_1^T + \mathbf{e}_{i,1}^T$

Predictions, residuals, vectors: explained

© ConnectMV, 2011 30

The residuals

Assemble the residuals for every row in a matrix, \mathbf{E}_1

The residuals

The next few slides discuss the residuals

- important part of fitting a model
- ideally, contains no information (just noise)

We will consider

- whole matrix residuals
- column residuals (per variable)
- row residuals (per observation)

Main way of quantifying residuals:

- calculate their sum of squares (ssq)
- in this case the ssq = variance

• and $R^2 = \frac{\text{variance explained by model}}{\frac{1}{2}}$

initial variance

Residuals: spectral example

- Data on course website
- Try it yourself: http://datasets.connectmv.com/info/tablet-spectra
- N = 460
- K = 650

Whole matrix residuals

$$\mathbf{F} \mathbf{X} = \mathbf{T}\mathbf{P}' + \mathbf{E} = \widehat{\mathbf{X}} + \mathbf{E}$$

Quantify how well the model (TP') fits the data

$$\blacktriangleright \ R_a^{2(\text{overall})} = 1 - \frac{\text{Var}(\mathbf{X} - \widehat{\mathbf{X}}_a)}{\text{Var}(\mathbf{X})} = 1 - \frac{\text{Var}(\mathbf{E}_a)}{\text{Var}(\mathbf{X})}$$

• $R_{a=0}^2 = 0.0$ (no components, means no variance explained)

• R^2 increases with every component added

Matrix residuals: spectral example

▶
$$R_{a=1}^2 = 73.7\%$$

▶ $R_{a=2}^2 = 92.2\%$ (an additional 18.5%)
▶ $R_{a=3}^2 = 94.2\%$ (an additional 2.00%)

Column residuals

$$\triangleright \ R_k^2 = 1 - \frac{\operatorname{Var}(\mathbf{x}_k - \widehat{\mathbf{x}}_k)}{\operatorname{Var}(\mathbf{x}_k)}$$

indicates how well each column is explained by the model

- is 0.0 when there are no components
- increases for every every component added

Column residuals: spectral example

Row residuals

▶
$$\mathbf{e}'_i = \mathbf{x}'_i - \widehat{\mathbf{x}}'_i$$

 $\mathbf{e}'_i = [(x_{i,1} - \hat{x}_{i,1}) \quad (x_{i,2} - \hat{x}_{i,2}) \quad \dots \quad (x_{i,k} - \hat{x}_{i,k}) \quad \dots \quad (x_{i,K} - \hat{x}_{i,K})]$
▶ Variance of residuals in a row = $e^2_{i,1} + e^2_{i,2} + \dots + e^2_{i,K}$

- Call this SPE = squared prediction error = $\mathbf{e}_i^T \mathbf{e}_i$
- Square root of SPE = "distance to model's X-space"
- "DModX" (used in some software) is related to $\sqrt{SPE_i}$

Distance from each observation to the model's plane:

- Smallest SPE ?
- Distribution of SPE values
- ▶ If SPE > 95% limit:
 - poorly explained by the model
 - something new in this observation
 - new phenomenon?

Row residuals: spectral example

Data sets to look at in class

- Website: http://datasets.connectmv.com
- Click on the "Peas" link and download CSV file
- Click on the "Food consumption" link and download CSV file
- Click on the "Food texture" link and download CSV file

For next class

- 1. Assignment: instructions will be posted on course website
- 2. Read the paper by Wold (item 12)
 - http://literature.connectmv.com/item/12
 - This will help you understand the material in next class
 - No Q&A: but strongly recommend you are familiar with the concepts
- 3. Next class will cover
 - how we calculate the components
 - how many components should be calculated
 - using the PCA model on new data