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Data sources

» PCA considers a single data table (matrix)
» We will call it X

K

X

» /N observations
» K variables
» What goes in the columns of X?

» What goes in the rows?



Visualization

How would you visualize such a data table?

For example: assume N = 300 and K =50

» One column at a time (time-series, histograms, boxplot)
» One row at a time (e.g. spectral data)

» Scatterplot matrix, requires K(K — 1)/2 pairs of scatterplots



What is PCA (Principal Components Analysis)?

Mathematical objective

PCA: find me the best summary of my data, X, with the fewest

number of summary variables, called scores, T.

K variables

X

PCA

N observations (rows)

A scores

T

l



Objectives for this class

PCA model will calculate from X:

» scores: T
» loadings: P

X

K variables

PCA

A scores

T




Objectives for this class

» Intuitive meaning of the scores, T and loadings, P and errors
in a PCA model

» The interpretation of each of these

» How to start investigating a new data table




Time to break out the math

» Notation for scores: t11,t1,...,th1,...,tN 1
» Notation for loadings: p11,p21,---,Pk1,---»PK,1
» Length of a vector: | a||



Let's get started

AT A

Data preprocessing

Geometric interpretation (hand waving explanation)
Analytical geometry (to understand the hand waving)
Algebraic approach (to formalize the notation)

Look at applying this all in software
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Raw data:

Preprocessing by example
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Preprocessing by example

Center and scale the raw data

with mean centering centered and scaled to unit variance

Raw data
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> Centering: Xk, center = Xk raw — Mean (Xk,raw)
Xk center

standard deviation (X center)
» Does not change relationships between variables

» Scaling: x, =



Geometric explanation of preprocessing

Raw data
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Geometric explanation of preprocessing

Calculate the mean of each variable (creates a “new” reference
point in the swarm)
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Geometric explanation of preprocessing

Mean center and scale
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Geometric explanation of PCA
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Geometric explanation of PCA

Project observations onto component (90 degrees)
X
3

A
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Geometric explanation of PCA

Second component: best-fit line; perpendicular to 1st component
X
A
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Geometric explanation of PCA

Second component: project onto second component
X
A

19



Geometric explanation of PCA

The 2 components form a plane (2-D subspace inside a 3D space)
X.

A
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Geometric explanation of PCA

What have we done here?
Broken X down into 2 parts:

» projected points “on the plane’

» residual distance “off the plane’
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Mathematical derivation for PCA

Derive this on the board:

\q?féo‘\
-1 (vector))pl
t- (distance)
i,1
adjacent length t; T
cos — 2TJacent ENetn _ fit and also cos = i PL _
hypotenuse [ || [[xi[[[[pa ]
ti1 _ X; P1
([l [[xi[[[[pa]l
tii1 = X p1

(1x1) = (1xK)(Kx1)
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Mathematical derivation for PCA

K 4
1
ilooooooooooo Az,
N N
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-
ti1 = X;p1
= Xj1P11+ Xi2p21+ ...+ X kPk1+ ...+ XikPK,1

» K individual terms add up (i.e. linear combination) to give t;

> Stack t; 1 values from N rows: T = XP



Interpreting t; = x,-Tpl

Given that:
-

> values in x;' are centred and scaled, and
» entries in p are between —1 and +1

using
= Xj1P11+ Xi2p21+ ...+ XikPk1+ -+ XikPK,1

how would you
> get a large positive value of t;1?
> get a large negative value of t; 17

> get a value of tj; ~ 07

» What can you say about observation (row) 13 and 22 if
t13,1 ~ 217
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Score plots: interpretation

Clustering
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Score plots: interpretation

Also look for:
> outliers
> patterns in the sequence order (if time-based row order)
» colour-code score plots by another variable (good/bad)

We'll see more of these tips as we work with the software.

Key point: anything you would normally have done to visualize a
column can be done with a score.
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Mathematical derivation for PCA

We'll look at this in next class:

1 k K 4

o) A
o) A
o A
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N 0 Al ¥

pl ]
Py,

For now though:
» Columns that are related have similar loadings

» “Direction vectors” = “Loadings”
» Link between the real-world (K) and latent-variable world (A)
T = XP

(NxA) = (NxK)KxA)
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Predicted values for each observation

Take a look at this on the board as well:

X;
\“e‘a‘o‘\ g
ei’l
>

(vector) »’A (vector) p]
R,

(distance)

ti,l
(1xK) = (1x1)(1x K) = best prediction of x; 1 with 1 component

In this case: “best” = “smallest error”
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The residuals

Residuals for row i after extracting one component = e; 1

e/, = x/ —&/; (each is a 1 x K vector)
Another way of stating this: x/ = X' +e/
y g i i1 i1
T _ T T
Xj = tiip; +€;
X;
\&L‘o‘\ 2
Ci1

>
3= ctor) <
(vector) A vecton pl
Xi1

t- (distance)
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Predictions, residuals, vectors: explained
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The residuals

Assemble the residuals for every row in a matrix, E;

K
e e e

1,11 12,1 1K,1

€1

N eN,l,l eN,Z,l eN,K,l



The residuals

The next few slides discuss the residuals
» important part of fitting a model

» ideally, contains no information (just noise)

We will consider
» whole matrix residuals
» column residuals (per variable)

> row residuals (per observation)

Main way of quantifying residuals:
> calculate their sum of squares (ssq)

» in this case the ssq = variance

> and R? — variance explained by model

initial variance
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Residuals: spectral example

Absorbance
N W A U1 O N

800 1000 1200 1400 1600 1800
Wavelength (nm)

» Data on course website

» Try it yourself: http://datasets.connectmv.com/info/tablet-spectra
» N = 460

» K =650
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http://datasets.connectmv.com/info/tablet-spectra

Whole matrix residuals
»X=TP +E=X+E
» Quantify how well the model (TP’) fits the data

L galoveral) _y Var(X=X,) | Var(E,)
Var(X) Var(X)

» R2_, = 0.0 (no components, means no variance explained)
» R? increases with every component added

> Rj(zolverall) < R32(=02verall) <. < RaQ(:o/\Alerall) ~1.0
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Matrix residuals: spectral example

/\

X |=| X |+

Variance = 100% a=1: R*= 73.7% [73.7%]
a=2: R? = 18.5% [92.2%]
a=3: R2= 1.99% [94.2%]

> R2_, =73.7%

a

> R2_, =92.2% (an additional 18.5%)

a

> R2_, =94.2% (an additional 2.00%)



Column residuals

>

R? can be calculated for each column
K K

X | |- X||=

E

v

v

v

v

X X

~ Var(xk — X)

R =1
k Var(xg)

2
ek—>Rk

indicates how well each column is explained by the model

is 0.0 when there are no components

increases for every every component added
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Column residuals: spectral example

R2 for each variable (wavelength)
00 02 04 06 08

1.0

L

|

—— R2: 1st component
— R2: 2nd component
—— R2: 3rd component

600 800 1000

1200 1400 1600 1800
Wavelengths
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Row residuals

K K SPE

<O
[
i
|

X —

- e w3,
e =[(1—%1) (xi2—%2) o (ik—%ik) - (K —%iK)]
> Variance of residuals in a row = e?; + €%, + ...+ €2,

» Call this SPE = squared prediction error = e,-Te;
» Square root of SPE = “distance to model’s X-space”

> “DModX" (used in some software) is related to v/SPE;
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Square prediction error

Distance from each observation to the model’s plane:
» Smallest SPE ?
» Distribution of SPE values

» If SPE > 95% limit:

» poorly explained by the model
» something new in this observation
» new phenomenon?
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Row residuals: spectral example

=1
30

SPE: A
10

0

SPE: A=2
8 12

0

SPE: A=3
0 4 8 12

0 100 200 300 400
Tablet number
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Data sets to look at in class

» Website: http://datasets.connectmv.com

» Click on the “Peas” link and download CSV file

» Click on the “Food consumption” link and download CSV file
» Click on the “Food texture” link and download CSV file

a1


http://datasets.connectmv.com

For next class

1. Assignment: instructions will be posted on course website
2. Read the paper by Wold (item 12)

» http://literature.connectmv.com/item/12

» This will help you understand the material in next class

» No Q&A: but strongly recommend you are familiar with the
concepts

3. Next class will cover

» how we calculate the components
» how many components should be calculated
» using the PCA model on new data
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