# Latent Variable Methods Course Learning from data

Instructor: Kevin Dunn
kevin.dunn@connectmv.com
http://connectmv.com

© Kevin Dunn, ConnectMV, Inc. 2011

Revision: 268:adfd compiled on 15-12-2011

## Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit <a href="http://creativecommons.org/licenses/by-sa/3.0/">http://creativecommons.org/licenses/by-sa/3.0/</a>

### This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to create commercial applications based on this work
- attribution you must attribute the work as follows:
  - ► "Portions of this work are the copyright of ConnectMV", or
  - "This work is the copyright of ConnectMV"

## We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes
- telling us if you use the slides, especially commercially, so we can inform you of major updates
- emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd

# Objectives for this class

- 1. Combine and learn from a variety of data sources
- Track variation during a batch and how it affects product quality

#### We will

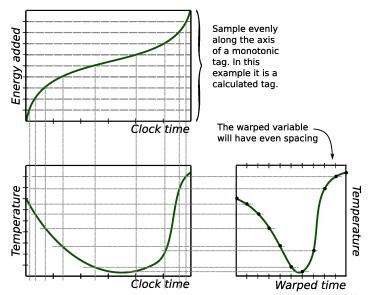
- recap the alignment concept that was badly explained last class
- introduce multiblock methods
- come back to batch monitoring
- end off with a case study that combines all these concepts

## Recap: Alignment with an indicator variable

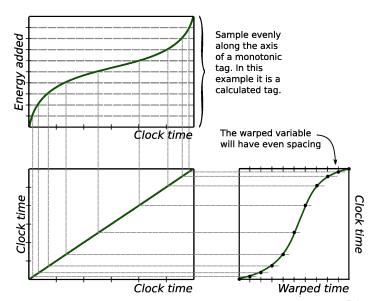
Read this slides in conjunction with the figures on the next 2 slides

- Choose a monotonic indicator variable to align against. For example:
  - reaction completion
  - a calculated variable
  - see other examples from last class
- Sample evenly along the y-axis of this tag
- Project across and down this monotonic tag onto all other tags, e.g. the temperature tag
- Resample these other tags at the new time points
- Notice how the tag has been time-warped
- ▶ We can also resample the "clock time" variable:
  - this creates a new "trajectory" called warped time
  - there is a warped time trajectory for each batch
  - ▶ include this in the unfolded **X** matrix as a new tag

# Recap: Alignment with an indicator variable



## Alignment recap



## Multiblock methods

The main concept

Divide your variables into blocks to get

- ▶ better model interpretation
- easier monitoring and improved fault detection

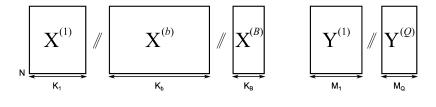
Why do this?: we'd like to understand the relationships between several groups of possibly related datasets

Sometimes called "data fusion".

### References

- Original concept: Wold et al., 1987 conference paper
- ▶ Improved fault detection: MacGregor et al., AIChE Journal
- Equivalence of MBPCA and PBPLS to PCA and PLS (very important paper): Westerhuis, Kourti and MacGregor
- Process monitoring example with MB methods: Qin et al.
- Good overview of all multiblock methods: Smilde, Westerhuis and de Jong, 2003

### Notation



- ▶ Multiple **X** and **Y** blocks are available
- There is only one consistent dimension: N = observations
- ▶ We will only consider the case of one  $\mathbf{Y}$  block  $(M_1 = M)$ 
  - Y will contain the usual quality variables
- We can have in  $\mathbf{X}^{(b)}$  for example:
  - raw material properties (e.g. one block per material)
  - NIR or UV-VIS spectra from each observation
  - Unfolded batch data
  - Measurements from each unit operation

Key point: you can have duplicated variables between blocks

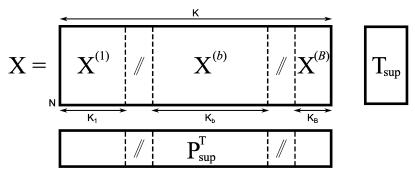
## Terminology and concepts

- ▶ Only have **X** blocks: multiblock PCA
- ▶ Add one or more **Y** blocks: then it becomes multiblock PLS

- ▶ Each block has: scores, loadings, SPE,  $T^2$ , weights, VIP,  $R^2$
- We also have a "super-level" or "super-model" that summarizes the blocks

## SUM-PCA approach

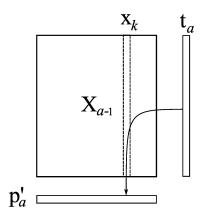
Crude approach: push all blocks together and build PCA model.



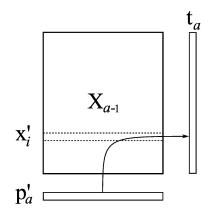
- ▶ Investigate loadings,  $R^2$ , etc separately for each block
- ▶ Block loadings,  $P^{(b)}$ , will not be orthogonal
- ► The super scores (the usual PCA scores) simply explain variation for entire X
- No guarantee that each block will contribute to superscores

### NIPALS review

Before we proceed, let's recap the NIPALS algorithm for PCA



Loadings are regression coefficients (slopes) when regressing columns in X onto  $t_a$ 



Scores are regression coefficients (slopes) when regressing rows in  $\mathbf{X}$  onto  $\mathbf{p}_a$ 

# Consensus PCA (CPCA)

## Consensus PCA steps

- 1. Let  $t_a^{(s)}$  be any column from any block
- 2. Regress column from  $\mathbf{X}_{a}^{(b)}$  onto  $\mathbf{t}_{a}^{(s)}$  to obtain block loadings

$$\mathbf{p}_{a}^{(b)} = \mathbf{X}^{(b)T}\mathbf{t}_{a}^{(s)}/\mathbf{t}_{a}^{(s)T}\mathbf{t}_{a}^{(s)}$$

- 3. Normalize  $\mathbf{p}_{a}^{(b)}$  to unit length
- 4. Calculate block's score:  $\mathbf{t}_a^{(b)} = \mathbf{X}^{(b)} \mathbf{p}_a^{(b)} \cdot \frac{1}{\sqrt{K_b}}$ 
  - weight  $\sqrt{K_b}$  prevents blocks with many terms (variables) in the above linear combination from creating large score values,  $\mathbf{t}_a^{(b)}$
- 5. Assemble block scores:  $\mathbf{T}_a^{[s]} = \left[\mathbf{t}_a^{(1)} \ \ldots \ \mathbf{t}_a^{(b)} \ \ldots \ \mathbf{t}_a^{(B)}\right]$

## Consensus PCA steps

6. Regress columns in  $\mathbf{T}_a^{[s]}$  onto the superscore,  $\mathbf{t}_a^{(s)}$  to calculate the super-level's loading:

$$\mathbf{p}_{a}^{[s]} = \mathbf{T}_{a}^{[s]T} \mathbf{t}_{a}^{(s)} / \left(\mathbf{t}_{a}^{(s)T} \mathbf{t}_{a}^{(s)}\right)$$
$$(B \times N)(N \times 1)$$

- 7. Normalize  $\mathbf{p}_a^{[s]}$  to unit length
- 8. Regress rows in  $\mathbf{T}_a^{[s]}$  onto  $\mathbf{p}_a^{[s]}$  to get the super-scores  $\mathbf{t}_a^{(s)}$ :

$$\begin{array}{rcl} \mathbf{t}_{a}^{(s)} & = & \mathbf{T}_{a}^{[s]} \mathbf{p}_{a}^{[s]} / \left( \mathbf{p}_{a}^{[s]T} \mathbf{p}_{a}^{[s]} \right) \\ & & (\mathcal{N} \times \mathcal{B}) (\mathcal{B} \times 1) \end{array}$$

denominator is usually = 1.0

- 9. Not converged? return back to step 2.
- 10. Converged? deflate each block with the superscore

$$\boldsymbol{\mathsf{X}}_{a}^{(b)} = \boldsymbol{\mathsf{X}}_{a}^{(b)} - \boldsymbol{\mathsf{t}}_{a}^{(s)}\boldsymbol{\mathsf{p}}_{a}^{(b)T}$$

# Consensus PCA (CPCA)

- $\mathbf{t}_{a}^{(s)}\mathbf{p}_{a}^{(b)} = \text{block prediction from the superscore, } \mathbf{t}_{a}^{(s)}$ , not the block's score
- $\mathbf{t}_{a}^{(s)}$  was calculated from the assembled scores,  $\mathbf{T}_{a}^{[s]}$
- $\mathbf{t}_{3}^{(s)}$  is just a weighted sum of these block scores (step 8): called the consensus score
- Each entry in the superloading shows how much of block b is used in the consensus score
- ▶ If a block behaves differently from the others, then its entry in  $\mathbf{p}_{a}^{(s)}$  will be small
- ▶ Deflation by  $\mathbf{t}_a^{(s)}$  removes the superscore information, not the block-score information.
  - ▶ We get non-orthogonal block scores, but orthogonal superscores

## Computational simplification

Westerhuis, Kourti and MacGregor (1998) showed we don't need to calculate CPCA as just described.

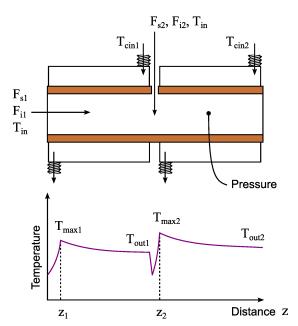
### Much easier approach:

- Preprocess the data from each block as normal
- ▶ Post divide each block by  $\sqrt{K_b}$  and assemble:

$$\mathbf{X} = \left[ \frac{\mathbf{X}^{(1)}}{\sqrt{K_1}}, \ \frac{\mathbf{X}^{(2)}}{\sqrt{K_2}}, \ \dots, \ \frac{\mathbf{X}^{(B)}}{\sqrt{K_B}} \right]$$

- Same idea as block-scaling (covered earlier in the course)
- Calculate PCA in the usual way on X to obtain:
  - $\triangleright$  scores will be identical to CPCA super scores,  $\mathbf{t}_1^{(s)}, \mathbf{t}_2^{(s)}, \dots, \mathbf{t}_A^{(s)}$
  - ▶ then follow steps 2, 3, 4, 5 and 6 from above
  - results will be identical to the full approach

## In-class example



## In-class example

Load the LDPE data set and create a 2-block PCA model:

- 1. "Zone 1" block
  - Inlet temperature
  - Pressure
  - ▶ All other variables ending in "1"
- 2. 'Zone 2" block
  - Inlet temperature
  - Pressure
  - All other variables ending in "2"

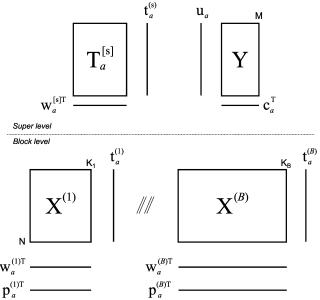
Build a multiblock CPCA model, using cross-validation to determine *A*:

- examine scores for each block, and the superblock
- examine the loadings bi-plot for each block
- example the SPE time-series for each block and the superblock

## What can go into each block?

- Raw material properties
  - have one block per raw material
- ▶ NIR or UV-VIS spectra ( $K^{(b)}$  will be large)
- Unfolded batch trajectories
- ▶ Features extracted from batch trajectories
- ▶ Data from sequential operations
  - data from each step/operation/phase in its own block
  - could be hard to ensure consistency from row to row
- ▶ Large PCA and PLS models. E.g. petroleum refinery
  - distillation column's data
  - fractionator's data
  - FCCU data
- Judges: one block per judge
  - each judge block contains the same columns (attributes)
- Lagged variables
  - e.g. a variable and all its lag per block
  - or, all variables at a particular lag in each block

# Multiblock PLS (MBPLS) concept



## MBPLS concept

We won't go through the detailed arrow pushing diagrams:

- 1. Start with an initial guess for  $\mathbf{u}_a$
- 2. Perform a CPCA cycle through all the  $\mathbf{X}^{(b)}$  blocks and this  $\mathbf{u}_a$
- 3. Assemble each block's scores,  $\mathbf{t}_a^{(b)}$ , into  $\mathbf{T}_a^{[s]} = \left[\mathbf{t}_a^{(1)} \dots \mathbf{t}_a^{(B)}\right]$
- 4. Do a single NIPALS cycle for PLS between  $\mathbf{T}_a^{[s]}$  and  $\mathbf{Y}$  for
  - super scores,  $\mathbf{t}_a^{(s)}$
  - super weights,  $\mathbf{w}_a^{[s]}$ , a  $B \times 1$  vector
  - ▶ **Y**-space loadings:  $\mathbf{c}_a$ , a  $M \times 1$  vector
  - Y-space scores: u<sub>a</sub>
- 5. Repeat from step 2 until convergence for the  $a^{\mathrm{th}}$  component
- 6. Then deflate ... (next slide)

Once all components calculated, predict  $\hat{\mathbf{Y}} = \mathbf{t}_1^{(s)} \mathbf{c}_1 + \ldots + \mathbf{t}_A^{(s)} \mathbf{c}_A$ 

## MBPLS deflation

There are 2 choices to deflate each block:

1. using the block's own score and loading

$$\mathbf{X}^{(b)} = \mathbf{X}^{(b)} - \mathbf{t}_a^{(b)} \mathbf{p}_a^{(b)T}$$

- induces orthogonal scores and loadings at the block level
- super scores,  $\mathbf{t}_{a}^{(s)}$ , will not be orthogonal
- 2. using the super score and the block's loading

$$\mathbf{X}^{(b)} = \mathbf{X}^{(b)} - \mathbf{t}_a^{(s)} \mathbf{p}_a^{(b)T}$$

- block level scores and loadings not orthogonal
- super scores are orthogonal

# Using the MBPLS model in the future

- 1. Center and scale new data,  $\mathbf{x}_{\text{new}}^{(b)}$ , according to each block's preprocessing
- 2. Calculate block score  $=t_{a,\mathrm{new}}^{(b)}=\mathbf{x}_{\mathrm{new}}^{(b)T}\mathbf{w}_{a}^{(b)}\cdot\frac{1}{K_{b}}$
- 3. Assemble the block score vector:  $\mathbf{t}_{a,\text{new}}^{[s]} = \left[t_{a,\text{new}}^{(1)}, \ldots, t_{a,\text{new}}^{(B)}\right]$
- 4. Calculate the super score:  $t_{a,\mathrm{new}}^{(s)} = \mathbf{t}_{a,\mathrm{new}}^{[s]} \mathbf{w}_a^{[s]}$
- 5. Deflate each block:  $\mathbf{x}_{\text{new}}^{(b)} = \mathbf{x}_{\text{new}}^{(b)} t_{a,\text{new}}^{(s)} \mathbf{p}_{a}^{(b)}$  using superscore
- 6. Repeat from step 2 for all components a = 1, 2, ... A
- 7. Predict:  $\hat{\mathbf{y}}_{\text{new}} = t_{1,\text{new}}^{(s)} \mathbf{c}_1 + \ldots + t_{A,\text{new}}^{(s)} \mathbf{c}_A$

Also calculate SPE and  $T^2$  for each block, and for the super level

## Which deflation to use for MBPLS

### Method 1

- ▶ Removes all variation in  $\mathbf{t}_a^{(b)}$  from  $\mathbf{X}^{(b)}$
- ► Also,  $\mathbf{t}_a^{(b)} w_{a,b}^{[s]}$  is the portion from block b used to predict  $\mathbf{Y}$
- ▶ If  $\mathbf{w}_{a,b}^{[s]} \approx 0$  (small super weight for block b for component a), then  $\mathbf{t}_a^{(b)}$  has not predictive ability for  $\mathbf{Y}$
- Once removed (deflated), it cannot be used in subsequent components
- One advantage though: the block scores tend to be more directly related to Y

### Method 2

- ▶ Removes from  $\mathbf{X}^{(b)}$  the variation in  $\mathbf{t}_a^{(s)}$
- ▶ Variation in  $\mathbf{t}_a^{(s)}$  is used to explain  $\mathbf{Y}$

## Actual calculation for MBPLS

Westerhuis, Kourti and MacGregor (1998) showed we don't need to calculate MBPLS as just described.

### Easier approach:

- Preprocess the data from each block as normal
- ▶ Post divide each block by  $\sqrt{K_b}$  and assemble:

$$\mathbf{X} = \left[ \frac{\mathbf{X}^{(1)}}{\sqrt{K_1}}, \ \frac{\mathbf{X}^{(2)}}{\sqrt{K_2}}, \ \dots, \ \frac{\mathbf{X}^{(B)}}{\sqrt{K_B}} \right]$$

- Calculate PLS in the usual way on X and Y to obtain:
  - ightharpoonup scores are identical to MBPLS super scores,  $\mathbf{t}_1^{(s)}, \mathbf{t}_2^{(s)}, \dots, \mathbf{t}_A^{(s)}$
  - back-calculate the block weights, loadings and scores
  - then calculate the block SPE and  $T^2$
  - also calculate the super weights
  - results will be identical to the full approach

## Is all this complexity worth it?

Given the above derivations (especially if this is the first time seeing it), one can rightly ask whether this is worth it.

- Consensus PCA can be calculated from ordinary PCA
- Multiblock PLS can be calculated from ordinary PLS
- ▶ This implies the predictive performance will be identical

### Advantages are:

- better interpretation
- separate monitoring and fault detection for each block, since
  - each block has its own SPE,  $T^2$ , weights, loadings, VIP,  $R^2$
  - ▶ super level: has SPE,  $T^2$ , weights, VIP,  $R^2$

# Better interpretation from multiblock models

FMC features example

## Better monitoring from multiblock models

The problem: contribution plots from a single PCA or PLS model often identify too many variables

- Complex systems with sub parts are split into blocks
- Even single units can be subdivided
  - ▶ film extruder: melt zone, extrusion zone, casting, roll-up
  - distillation column: bottom, feed and top trays, reboiler, condenser
- ▶ Monitor the SPE's from each block, and the super block's SPE and T<sup>2</sup>
- When SPE limit is exceeded, only show contributions for the block where the limit is exceeded

## Sequential monitoring with multiblock models

Many processes consist of sequential steps. Example: 4 sequential operations are used to produce the final product; lab values are measured at the end. Two weeks from start to end.



- ▶ Use data from each stage to calculate block's SPE and  $T^2$
- Proceed to the next stage if they are below the limit
- ▶ One also obtains a prediction of **Y** after each stage
  - the prediction accuracy should improve after each stage
- ▶ If limit exceeded: use contributions, and judge the risk/cost of continuing
  - previous bad observations will help determine and understand this risk

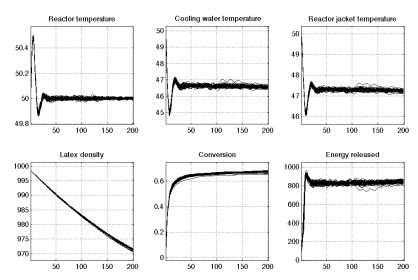
## Batch PLS example: SBR

- Simulated data from first principles mechanistic model for styrene butadiene rubber<sup>1</sup>
- Simulations are useful to make sure models identify what we expect
- Simulation contained mostly "normal operating conditions"
  - 2 problematic batches were simulated
  - the same fault, but starting at different times
- ► **Y**-space quality variables:
  - 1. Composition
  - 2. Particle size
  - 3. Branching
  - 4. Cross linking
  - 5. Polydispersity

<sup>&</sup>lt;sup>1</sup>More details can be found in Paul Nomikos' PhD thesis

### SBR: raw data

▶ Batches data: N = 53; Tags: K = 6; Time steps: J = 200



## SBR: build model

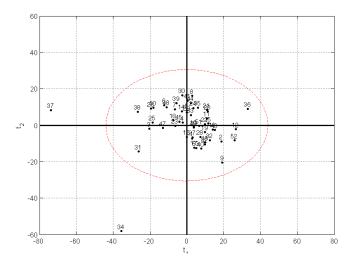
### Approach:

- Normally I would start with a PCA on the X-space trajectories to understand the trajectory relationships
- ► Then a PCA on the **Y**-space quality variables to see if there are unusual batches
- In this data set: both these PCA models give the same interpretation as PLS
- ▶ So we only show the PLS results here.

### PLS results:

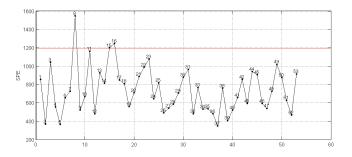
- ▶ Start with 2 to 3 components: just to see what's going on
- $ightharpoonup R_{X,1}^2 = 24.5\%$  and  $R_{X,2}^2 = 12.7\%$
- $Arr R_{Y.1}^2 = 65.3\%$  and  $R_{X.2}^2 = 6.9\%$
- ▶ Next: scores, weights, SPE, T² ... all the usual PLS tools

## SBR: PLS score plot



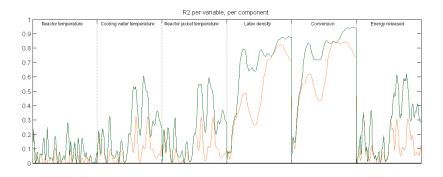
▶ Batches 34 and 37 were in fact the unsuccessful batches! This shows promise.

## SBR: check SPE



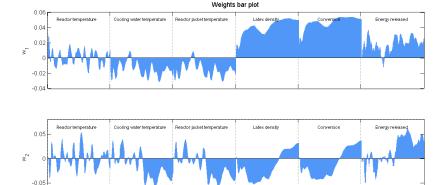
▶ No problems picked up. This is the overall SPE, using data from the *entire* batch.

# SBR: understand $R^2$ breakdown in the **X**-space



- ▶ LV1 and 2: latex density and conversion dominate the model
- $ightharpoonup R^2$  is low at start because all batches are similar initially
  - after centering and scaling there is just noise at the start.

### SBR: PLS weights

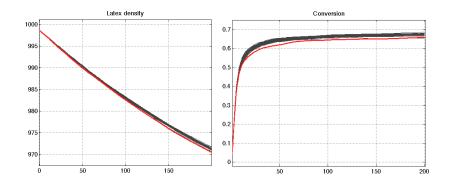


From the above we can infer that:

- batch 37 had low t<sub>1</sub> because of
  - below average latex density throughout the batch
  - below average conversion throughout the batch

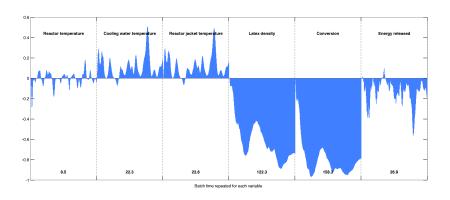
Confirmed in the raw data, and contribution plot for batch 37 ... next

# SBR: raw data for batch 37 (to confirm)



- Confirmed our interpretation with the raw data
- ► True cause (from simulation): 30% greater organic impurity in butadiene feed, from the start of the batch

# SBR: contribution plot for batch 37

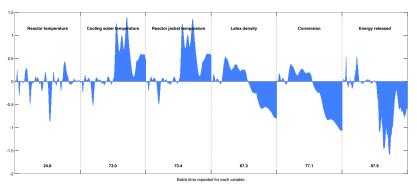


Contributions highest for the latex density and conversion, as expected.

## SBR: investigate batch 34

#### Batch 34 had high $t_2$ :

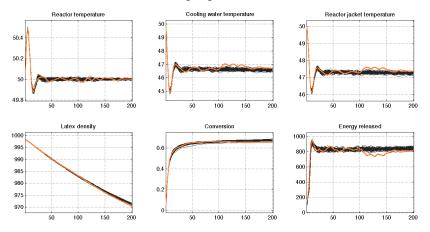
- ▶ From weights plot for  $w_2$  (earlier): we expect the problem to be due to cooling water, jacket temperature, and below average energy released in last half of the batch
- Contribution plot confirms this:



This affected the density and conversion as well.

## SBR: investigate batch 34

### Raw data for this batch is highlighted



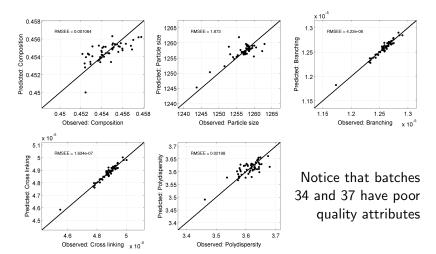
Confirms the problem occurred. Same problem as before, 30% greater organic impurity in butadiene feed, but only midway during the batch progress.

### Interesting observation

- ▶ The same fault occurred in batch 34 and 37.
- ▶ But they show up in different locations in the score plot
- ▶ Because the *time when the fault occurred* is different

### SBR: predictions from the model

We also get predictions from the batch PLS model for the 5 quality variables:



### Batch monitoring

#### Two types of monitoring

#### 1. Off-line, post-batch monitoring

- ▶ Use all the data after the batch is complete: score plots, SPE plots, contribution plots for new data, in the usual way
- Allows for early release of the batch to the next stage. Don't have to wait for lab results if the batch is multivariately inside the control limits
- We have already covered the material for this
- Risk: don't just use the SPE and scores at the end of the batch: it is also how you go to the end that matters

### 2. On-line monitoring<sup>2</sup>

- ▶ real-time detection of problems as a new batch progresses
- many high value batch systems run in the order of weeks
- save money if we detect and correct these problems before the batch end

<sup>&</sup>lt;sup>2</sup>Reference: Paul Nomikos' PhD thesis

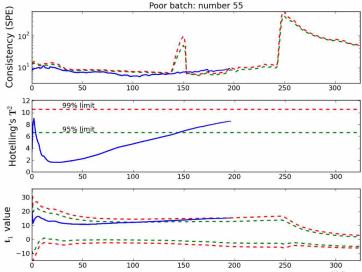
# Principle of real-time monitoring (and prediction)

- Mhile the batch progresses, at time step j, try to get the best estimate of the scores at the **end of the batch**,  $\hat{\mathbf{t}}_{j,\text{new}} = \boldsymbol{\tau}_j$
- $\hat{\mathbf{x}}_{j,\mathsf{new}} = \mathbf{P}_j \boldsymbol{\tau}_j \qquad \qquad \leftarrow \mathsf{predicted} \; \mathsf{trajectory} \; \mathsf{at} \; \mathsf{time} \; j$
- $\mathbf{e}_{j,\mathsf{new}} = \mathbf{x}_{j,\mathsf{new}} \mathbf{\hat{x}}_{j,\mathsf{new}} \qquad \qquad \leftarrow \mathsf{only} \; \mathsf{a} \; \mathsf{K} imes \mathsf{1} \; \mathsf{vector}$
- ►  $\mathsf{SPE}_{j,\mathsf{new}} = \mathbf{e}_{j,\mathsf{new}}^T \mathbf{e}_{j,\mathsf{new}}$   $\leftarrow \mathsf{SPE} \mathsf{ at time } j$
- ▶ This is called the instantaneous SPE
- $\mathbf{e}_{1:j,\mathsf{new}} = \mathbf{x}_{1:j,\mathsf{new}} \mathbf{P}_{1:j} \boldsymbol{ au}_j \qquad \leftarrow \mathsf{a} \ j \mathsf{K} \times 1 \ \mathsf{vector}$
- SPE calculated using data from start to time j: called the evolving SPE
- lacktriangle Evolving SPE gets closer and closer to final SPE as j o J
- **>** For batch PLS, we get a prediction:  $\hat{\mathbf{y}}_{j,\text{new}} = \boldsymbol{ au}_j^T \mathbf{C}$

Our real time monitoring and predictions hinge on the ability to calculate the estimated end-point score,  $\hat{\mathbf{t}}_{i,\text{new}} = \boldsymbol{\tau}_i$ 

# Demonstration of batch monitoring

3 monitoring videos: good, poor, and a batch with a problem in the middle



### Time-varying monitoring limits

Limits for SPE and the scores vary with time<sup>3</sup>

#### SPE limits

- ► SPE $_j \sim g\chi^2(h)$  ← follows an approximate  $\chi^2$  distribution ►  $g = \frac{v}{2m}$  = premultiplier
- $h = \frac{2m^2}{V} = \text{degrees of freedom of } \chi^2(h)$
- $\rightarrow m = mean(SPE_i)$
- $\mathbf{v} = \text{var}(SPE_i)$

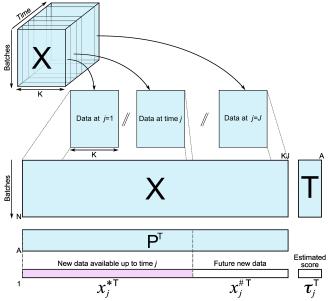
Use SPE values at time step j on all the good batches to estimate g and h

#### Score limits

- Assume  $t_{a,j}$  to be normally distributed, though a t-distribution is more correct
- Estimate mean and variance at time j from good batches

<sup>&</sup>lt;sup>3</sup>Derivations in Nomikos and MacGregor paper

# Real-time monitoring of a new batch



## How to handle the missing future data

How to estimate the end-score:  $\mathbf{\hat{t}}_{j,\mathsf{new}} = oldsymbol{ au}_j$ ?

- 1. Fill future value with zeros
  - implies rest of batch runs at the average trajectory
- 2. Current deviations approach
  - mean centered and scaled deviation at time j is copied and pasted forward
  - implies current deviations persist (MPC assumption)
- 3. Missing data handling
  - Use one of the many missing data handling methods for PCA/PLS
    - score limits tend to have have variability at start, but quickly stabilize
    - single component projection, SCP: poor, but simple choice
    - projection to model plane, PMP: improves SCP somewhat
    - conditional mean replacement (CMR) or trimmed score regression (TSR) are better (good)

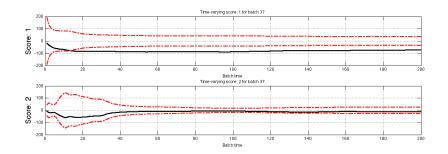
# How to handle the missing future data

### From a monitoring perspective:

- doesn't really matter too much which missing data method is used
- the control limits are a function of the method chosen

More details: Comparing different missing data approaches for on-line monitoring and trajectory prediction (García-Muñoz et al.)

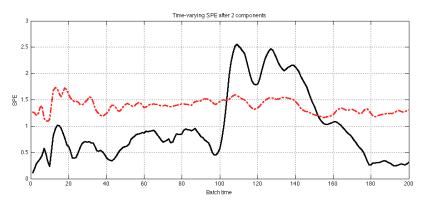
### SBR: scores over time for batch 37



- ▶ Highlights *when* the problem occurred: right at the start
  - Was due to an impurity in the feed: consumed reactant and lowers latex density and conversion
- SPE was within limits throughout the batch

# SBR example: bad batch 34

Simulation introduced impurity in feed midway, during the batch



We will use the software to diagnose the contributions

# Case study: multiblock batch PLS model

This case study will introduce a number of concepts, by example. We will see:

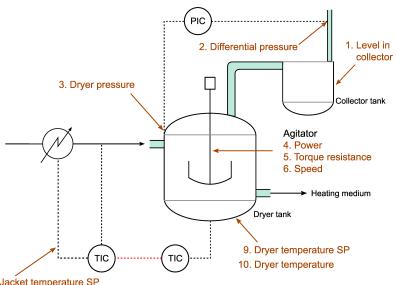
- 1. Multivariate characterization of product quality
- 2. Effect of initial conditions on product quality
- 3. Alignment of batch trajectories
- 4. Troubleshoot problems: poor product quality
- 5. Predictions of final quality attributes
- 6. Stagewise batch monitoring

### Case study: multiblock batch PLS model

#### This case study is as complex as it gets:

- Multiblock:
  - ▶ **X**<sup>(1)</sup>: initial conditions (chemistry information)
  - ▶ **X**<sup>(2)</sup>: alignment information
  - ▶ X<sup>(3)</sup>: batch trajectories
  - ▶ **Y**: quality attributes
- ▶ X<sup>(3)</sup> contains batch trajectories
- ▶ We will work up to a multiblock PLS model for the quality predictions

### Process background



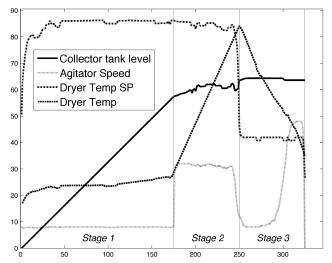
7. Jacket temperature SP 8. Jacket temperature

### Process background

- Agricultural chemical production
- Wet "cake" (solid with embedded solvent) is charged to system and dried
- The solvent is collected in an external, side tank
- ► Chemical changes occur in the solid phase during drying
- 3 phases in the recipe (more details later)
- Operators can adjust some parameters

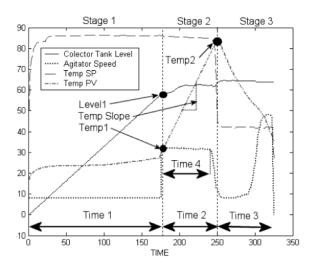
### About the batch trajectories

- ▶ 10 trajectories measured per batch
- ▶ 3 phases: solvent collection, temperature ramp, cooling down



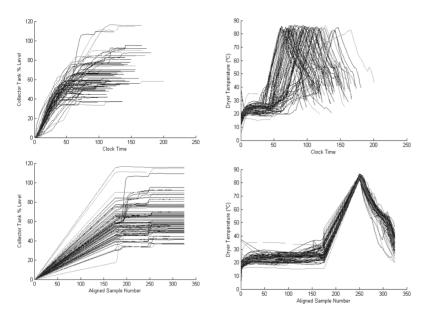
### Aligning the trajectories

▶ Done within each phase



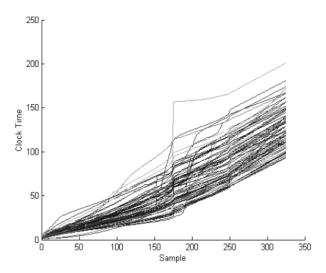
▶ Transfer alignment information to  $\mathbf{Z}_{op} = \mathbf{X}^{(2)}$ 

# Aligning the trajectories



# Aligning the trajectories

▶ Include time-distortion variable as a trajectory



# Multiblock: what goes in **Z**

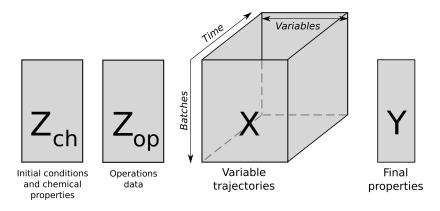
Our **Z** blocks are just  $\mathbf{X}^{(b)}$  blocks in the multiblock algorithm.

Use any relevant information that is constant over the batch:

- ► Feed (raw material) properties and supplier code
- ► Feed composition (e.g. from the supplier's certificate)
- Set up time
- Summary of any upstream operations on the raw material
  - summary of raw values
  - PCA or PLS scores from upstream units
- recipe information
- alignment summary (warping factors)
- operator identifiers or shift identifier
- Properties after adding materials, but before starting the batch
  - ▶ pH, NIR spectra, temperature
- ambient conditions
- ▶ idle times between phases of the batch

## A more complete analysis for product quality

- $ightharpoonup \mathbf{Z}_{\mathsf{chem}} = \mathbf{X}^{(1)}$ : chemical properties of the cake
- $ightharpoonup Z_{op} = X^{(2)}$ : alignment information
- **X** =  $\mathbf{X}^{(3)}$ : batch trajectories, including the time warping trajectory



# Characterizing product quality: understanding the **Y** space

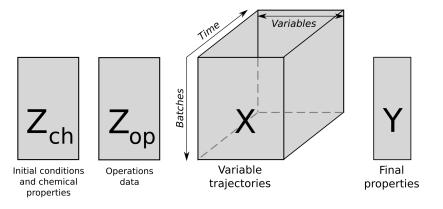
- Product quality is a multivariate property
- One should start with a PCA model of Y
- Look at this in the software

#### Batch disposition:

- Good batches: labeled 1 to 33
- Abnormal batches: labeled 34 to 61
- ▶ High residual solvent batches: labeled 62 to 71

## Effect of initial conditions on product quality

- Investigate the chemistry effect: **Z**<sub>chem</sub> effect on **Y**
- Weight of wet cake



### Multiblock PLS model

#### Create the following blocks:

- ▶ Timing block: all features related to timing in the batch
- ► Temperatures: all temperature related features
- ► Chemistry block: Z1, Z2, ... Z11 and WgtCake
- Impeller block: power, torque and agitator
- Pressure block: pressures and tank level variables
- ▶ Y-block: all Yi tags, including SolventConc