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Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0

Unported License. To view a copy of this license, please visit

http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

I to share - to copy, distribute and transmit the work

I to adapt - but you must distribute the new result under the
same or similar license to this one

I commercialize - you are allowed to create commercial
applications based on this work

I attribution - you must attribute the work as follows:
I “Portions of this work are the copyright of ConnectMV”, or
I “This work is the copyright of ConnectMV”
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We appreciate:

I if you let us know about any errors in the slides

I any suggestions to improve the notes

I telling us if you use the slides, especially commercially, so we
can inform you of major updates

I emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd
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Objectives for this class

1. Combine and learn from a variety of data sources

2. Track variation during a batch and how it affects product
quality

We will

I recap the alignment concept that was badly explained last
class

I introduce multiblock methods

I come back to batch monitoring

I end off with a case study that combines all these concepts
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Recap: Alignment with an indicator variable

Read this slides in conjunction with the figures on the next 2 slides
I Choose a monotonic indicator variable to align against. For

example:
I reaction completion
I a calculated variable
I see other examples from last class

I Sample evenly along the y -axis of this tag

I Project across and down this monotonic tag onto all other
tags, e.g. the temperature tag

I Resample these other tags at the new time points

I Notice how the tag has been time-warped
I We can also resample the “clock time” variable:

I this creates a new “trajectory” called warped time
I there is a warped time trajectory for each batch
I include this in the unfolded X matrix as a new tag
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Recap: Alignment with an indicator variable
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Alignment recap
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Multiblock methods

The main concept

Divide your variables into blocks to get

I better model interpretation

I easier monitoring and improved fault detection

Why do this?: we’d like to understand the relationships between
several groups of possibly related datasets

Sometimes called “data fusion”.
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References

I Original concept: Wold et al., 1987 conference paper

I Improved fault detection: MacGregor et al., AIChE Journal

I Equivalence of MBPCA and PBPLS to PCA and PLS (very
important paper): Westerhuis, Kourti and MacGregor

I Process monitoring example with MB methods: Qin et al.

I Good overview of all multiblock methods: Smilde, Westerhuis
and de Jong, 2003
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Notation

I Multiple X and Y blocks are available

I There is only one consistent dimension: N = observations
I We will only consider the case of one Y block (M1 = M)

I Y will contain the usual quality variables
I We can have in X(b) for example:

I raw material properties (e.g. one block per material)
I NIR or UV-VIS spectra from each observation
I Unfolded batch data
I Measurements from each unit operation

Key point: you can have duplicated variables between blocks
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Terminology and concepts

I Only have X blocks: multiblock PCA

I Add one or more Y blocks: then it becomes multiblock PLS

I Each block has: scores, loadings, SPE, T 2, weights, VIP, R2

I We also have a “super-level” or “super-model” that
summarizes the blocks
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SUM-PCA approach

Crude approach: push all blocks together and build PCA model.

I Investigate loadings, R2, etc separately for each block
I Block loadings, P(b), will not be orthogonal
I The super scores (the usual PCA scores) simply explain

variation for entire X
I No guarantee that each block will contribute to superscores
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NIPALS review
Before we proceed, let’s recap the NIPALS algorithm for PCA

Loadings are regression
coefficients (slopes) when
regressing columns in X onto ta

Scores are regression coefficients
(slopes) when regressing rows in
X onto pa
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Consensus PCA (CPCA)

Left blank for you to draw the diagram ©ConnectMV, 2011 14



Consensus PCA steps

1. Let t
(s)
a be any column from any block

2. Regress column from X
(b)
a onto t

(s)
a to obtain block loadings

p
(b)
a = X(b)T t

(s)
a /t

(s)T
a t

(s)
a

3. Normalize p
(b)
a to unit length

4. Calculate block’s score: t
(b)
a = X(b)p

(b)
a · 1√

Kb

I weight
√

Kb prevents blocks with many terms (variables) in the

above linear combination from creating large score values, t
(b)
a

5. Assemble block scores: T
[s]
a =

[
t
(1)
a . . . t

(b)
a . . . t

(B)
a

]
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Consensus PCA steps

6. Regress columns in T
[s]
a onto the superscore, t

(s)
a to calculate

the super-level’s loading:

p
[s]
a = T

[s]T
a t

(s)
a /

(
t
(s)T
a t

(s)
a

)
(B × N)(N × 1)

7. Normalize p
[s]
a to unit length

8. Regress rows in T
[s]
a onto p

[s]
a to get the super-scores t

(s)
a :

t
(s)
a = T

[s]
a p

[s]
a /

(
p

[s]T
a p

[s]
a

)
(N × B)(B × 1)

denominator is usually = 1.0

9. Not converged? return back to step 2.

10. Converged? deflate each block with the superscore

X
(b)
a = X

(b)
a − t

(s)
a p

(b)T
a
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Consensus PCA (CPCA)

I t
(s)
a p

(b)
a = block prediction from the superscore, t

(s)
a , not the

block’s score

I t
(s)
a was calculated from the assembled scores, T

[s]
a

I t
(s)
a is just a weighted sum of these block scores (step 8):

called the consensus score

I Each entry in the superloading shows how much of block
b is used in the consensus score

I If a block behaves differently from the others, then its entry in

p
(s)
a will be small

I Deflation by t
(s)
a removes the superscore information, not the

block-score information.
I We get non-orthogonal block scores, but orthogonal

superscores
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Computational simplification

Westerhuis, Kourti and MacGregor (1998) showed we don’t need
to calculate CPCA as just described.

Much easier approach:

I Preprocess the data from each block as normal

I Post divide each block by
√

Kb and assemble:

X =

[
X(1)

√
K1

,
X(2)

√
K2

, . . . ,
X(B)

√
KB

]

I Same idea as block-scaling (covered earlier in the course)

I Calculate PCA in the usual way on X to obtain:

I scores will be identical to CPCA super scores, t
(s)
1 , t

(s)
2 , . . . , t

(s)
A

I then follow steps 2, 3, 4, 5 and 6 from above
I results will be identical to the full approach
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In-class example
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In-class example

Load the LDPE data set and create a 2-block PCA model:

1. “Zone 1” block
I Inlet temperature
I Pressure
I All other variables ending in “1”

2. ‘Zone 2” block
I Inlet temperature
I Pressure
I All other variables ending in “2”

Build a multiblock CPCA model, using cross-validation to
determine A:

I examine scores for each block, and the superblock

I examine the loadings bi-plot for each block

I example the SPE time-series for each block and the superblock
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What can go into each block?

I Raw material properties
I have one block per raw material

I NIR or UV-VIS spectra (K (b) will be large)
I Unfolded batch trajectories
I Features extracted from batch trajectories
I Data from sequential operations

I data from each step/operation/phase in its own block
I could be hard to ensure consistency from row to row

I Large PCA and PLS models. E.g. petroleum refinery
I distillation column’s data
I fractionator’s data
I FCCU data

I Judges: one block per judge
I each judge block contains the same columns (attributes)

I Lagged variables
I e.g. a variable and all its lag per block
I or, all variables at a particular lag in each block
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Multiblock PLS (MBPLS) concept
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MBPLS concept

We won’t go through the detailed arrow pushing diagrams:

1. Start with an initial guess for ua

2. Perform a CPCA cycle through all the X(b) blocks and this ua

3. Assemble each block’s scores, t
(b)
a , into T

[s]
a =

[
t
(1)
a . . . t

(B)
a

]
4. Do a single NIPALS cycle for PLS between T

[s]
a and Y for

I super scores, t
(s)
a

I super weights, w
[s]
a , a B × 1 vector

I Y-space loadings: ca, a M × 1 vector
I Y-space scores: ua

5. Repeat from step 2 until convergence for the ath component

6. Then deflate ... (next slide)

Once all components calculated, predict Ŷ = t
(s)
1 c1 + . . . + t

(s)
A cA
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MBPLS deflation

There are 2 choices to deflate each block:

1. using the block’s own score and loading

X(b) = X(b) − t
(b)
a p

(b)T
a

I induces orthogonal scores and loadings at the block level
I super scores, t

(s)
a , will not be orthogonal

2. using the super score and the block’s loading

X(b) = X(b) − t
(s)
a p

(b)T
a

I block level scores and loadings not orthogonal
I super scores are orthogonal
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Using the MBPLS model in the future

1. Center and scale new data, x
(b)
new, according to each block’s

preprocessing

2. Calculate block score = t
(b)
a,new = x

(b)T
new w

(b)
a · 1

Kb

3. Assemble the block score vector: t
[s]
a,new =

[
t
(1)
a,new, . . . , t

(B)
a,new

]
4. Calculate the super score: t

(s)
a,new = t

[s]
a,neww

[s]
a

5. Deflate each block: x
(b)
new = x

(b)
new − t

(s)
a,newp

(b)
a using superscore

6. Repeat from step 2 for all components a = 1, 2, . . . A

7. Predict: ŷnew = t
(s)
1,newc1 + . . . + t

(s)
A,newcA

Also calculate SPE and T 2 for each block, and for the super level
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Which deflation to use for MBPLS

Method 1

I Removes all variation in t
(b)
a from X(b)

I Also, t
(b)
a w

[s]
a,b is the portion from block b used to predict Y

I If w
[s]
a,b ≈ 0 (small super weight for block b for component a),

then t
(b)
a has not predictive ability for Y

I Once removed (deflated), it cannot be used in subsequent
components

I One advantage though: the block scores tend to be more
directly related to Y

Method 2

I Removes from X(b) the variation in t
(s)
a

I Variation in t
(s)
a is used to explain Y
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Actual calculation for MBPLS

Westerhuis, Kourti and MacGregor (1998) showed we don’t need
to calculate MBPLS as just described.

Easier approach:

I Preprocess the data from each block as normal

I Post divide each block by
√

Kb and assemble:

X =

[
X(1)

√
K1

,
X(2)

√
K2

, . . . ,
X(B)

√
KB

]
I Calculate PLS in the usual way on X and Y to obtain:

I scores are identical to MBPLS super scores, t
(s)
1 , t

(s)
2 , . . . , t

(s)
A

I back-calculate the block weights, loadings and scores
I then calculate the block SPE and T 2

I also calculate the super weights
I results will be identical to the full approach
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Is all this complexity worth it?

Given the above derivations (especially if this is the first time
seeing it), one can rightly ask whether this is worth it.

I Consensus PCA can be calculated from ordinary PCA

I Multiblock PLS can be calculated from ordinary PLS

I This implies the predictive performance will be identical

Advantages are:

I better interpretation
I separate monitoring and fault detection for each block, since

I each block has its own SPE, T 2, weights, loadings, VIP, R2

I super level: has SPE, T 2, weights, VIP, R2
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Better interpretation from multiblock models

FMC features example
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Better monitoring from multiblock models

The problem: contribution plots from a single PCA or PLS model
often identify too many variables

I Complex systems with sub parts are split into blocks
I Even single units can be subdivided

I film extruder: melt zone, extrusion zone, casting, roll-up
I distillation column: bottom, feed and top trays, reboiler,

condenser

I Monitor the SPE’s from each block, and the super block’s
SPE and T 2

I When SPE limit is exceeded, only show contributions for the
block where the limit is exceeded
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Sequential monitoring with multiblock models

Many processes consist of sequential steps. Example: 4 sequential
operations are used to produce the final product; lab values are
measured at the end. Two weeks from start to end.

I Use data from each stage to calculate block’s SPE and T 2

I Proceed to the next stage if they are below the limit
I One also obtains a prediction of Y after each stage

I the prediction accuracy should improve after each stage

I If limit exceeded: use contributions, and judge the risk/cost of
continuing

I previous bad observations will help determine and understand
this risk
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Batch PLS example: SBR

I Simulated data from first principles mechanistic model for
styrene butadiene rubber1

I Simulations are useful to make sure models identify what we
expect

I Simulation contained mostly “normal operating conditions”
I 2 problematic batches were simulated
I the same fault, but starting at different times

I Y-space quality variables:

1. Composition
2. Particle size
3. Branching
4. Cross linking
5. Polydispersity

1
More details can be found in Paul Nomikos’ PhD thesis
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SBR: raw data

I Batches data: N = 53; Tags: K = 6; Time steps: J = 200
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SBR: build model

Approach:

I Normally I would start with a PCA on the X-space trajectories
to understand the trajectory relationships

I Then a PCA on the Y-space quality variables to see if there
are unusual batches

I In this data set: both these PCA models give the same
interpretation as PLS

I So we only show the PLS results here.

PLS results:

I Start with 2 to 3 components: just to see what’s going on

I R2
X ,1 = 24.5% and R2

X ,2 = 12.7%

I R2
Y ,1 = 65.3% and R2

X ,2 = 6.9%

I Next: scores, weights, SPE, T 2 ... all the usual PLS tools
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SBR: PLS score plot

I Batches 34 and 37 were in fact the unsuccessful batches! This
shows promise.
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SBR: check SPE

I No problems picked up. This is the overall SPE, using data
from the entire batch.
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SBR: understand R2 breakdown in the X-space

I LV1 and 2: latex density and conversion dominate the model
I R2 is low at start because all batches are similar initially

I after centering and scaling there is just noise at the start.
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SBR: PLS weights

From the above we can infer that:
I batch 37 had low t1 because of

I below average latex density throughout the batch
I below average conversion throughout the batch

Confirmed in the raw data, and contribution plot for batch 37 ... next
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SBR: raw data for batch 37 (to confirm)

I Confirmed our interpretation with the raw data

I True cause (from simulation): 30% greater organic impurity
in butadiene feed, from the start of the batch
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SBR: contribution plot for batch 37

I Contributions highest for the latex density and conversion, as
expected.
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SBR: investigate batch 34

Batch 34 had high t2:
I From weights plot for w2 (earlier): we expect the problem to

be due to cooling water, jacket temperature, and below
average energy released in last half of the batch

I Contribution plot confirms this:

This affected the density and conversion as well.
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SBR: investigate batch 34

Raw data for this batch is highlighted

Confirms the problem occurred. Same problem as before, 30%
greater organic impurity in butadiene feed, but only midway during
the batch progress.
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Interesting observation

I The same fault occurred in batch 34 and 37.

I But they show up in different locations in the score plot

I Because the time when the fault occurred is different
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SBR: predictions from the model

We also get predictions from the batch PLS model for the 5
quality variables:

Notice that batches
34 and 37 have poor

quality attributes
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Batch monitoring

Two types of monitoring

1. Off-line, post-batch monitoring
I Use all the data after the batch is complete: score plots, SPE

plots, contribution plots for new data, in the usual way
I Allows for early release of the batch to the next stage. Don’t

have to wait for lab results if the batch is multivariately inside
the control limits

I We have already covered the material for this
I Risk: don’t just use the SPE and scores at the end of the

batch: it is also how you go to the end that matters

2. On-line monitoring2

I real-time detection of problems as a new batch progresses
I many high value batch systems run in the order of weeks
I save money if we detect and correct these problems before the

batch end
2Reference: Paul Nomikos’ PhD thesis
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Principle of real-time monitoring (and prediction)

I While the batch progresses, at time step j , try to get the best
estimate of the scores at the end of the batch, t̂j ,new = τ j

I x̂j ,new = Pjτ j ← predicted trajectory at time j

I ej ,new = xj ,new − x̂j ,new ← only a K × 1 vector

I SPEj ,new = eT
j ,new ej ,new ← SPE at time j

I This is called the instantaneous SPE

I e1:j ,new = x1:j ,new − P1:jτ j ← a jK × 1 vector

I SPE calculated using data from start to time j : called the
evolving SPE

I Evolving SPE gets closer and closer to final SPE as j → J

I For batch PLS, we get a prediction: ŷj ,new = τT
j C

Our real time monitoring and predictions hinge on the ability to
calculate the estimated end-point score, t̂j ,new = τ j
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Demonstration of batch monitoring

3 monitoring videos: good, poor, and a batch with a problem in
the middle
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Time-varying monitoring limits

Limits for SPE and the scores vary with time3

I SPE limits

I SPEj ∼ gχ2(h) ← follows an approximate χ2 distribution

I g =
v

2m
= premultiplier

I h =
2m2

v
= degrees of freedom of χ2(h)

I m = mean(SPEj)
I v = var(SPEj)

Use SPE values at time step j on all the good batches to
estimate g and h

I Score limits

I Assume ta,j to be normally distributed, though a t-distribution
is more correct

I Estimate mean and variance at time j from good batches

3Derivations in Nomikos and MacGregor paper
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Real-time monitoring of a new batch
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How to handle the missing future data

How to estimate the end-score: t̂j ,new = τ j?

1. Fill future value with zeros
I implies rest of batch runs at the average trajectory

2. Current deviations approach
I mean centered and scaled deviation at time j is copied and

pasted forward
I implies current deviations persist (MPC assumption)

3. Missing data handling
I Use one of the many missing data handling methods for

PCA/PLS
I score limits tend to have have variability at start, but quickly

stabilize
I single component projection, SCP: poor, but simple choice
I projection to model plane, PMP: improves SCP somewhat
I conditional mean replacement (CMR) or trimmed score

regression (TSR) are better (good)
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How to handle the missing future data

From a monitoring perspective:

I doesn’t really matter too much which missing data method is
used

I the control limits are a function of the method chosen

More details: Comparing different missing data approaches for
on-line monitoring and trajectory prediction (Garćıa-Muñoz et al.)
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SBR: scores over time for batch 37

I Highlights when the problem occurred: right at the start
I Was due to an impurity in the feed: consumed reactant and

lowers latex density and conversion

I SPE was within limits throughout the batch
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SBR example: bad batch 34

Simulation introduced impurity in feed midway, during the batch

We will use the software to diagnose the contributions
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Case study: multiblock batch PLS model

This case study will introduce a number of concepts, by example.
We will see:

1. Multivariate characterization of product quality

2. Effect of initial conditions on product quality

3. Alignment of batch trajectories

4. Troubleshoot problems: poor product quality

5. Predictions of final quality attributes

6. Stagewise batch monitoring
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Case study: multiblock batch PLS model

This case study is as complex as it gets:
I Multiblock:

I X(1): initial conditions (chemistry information)
I X(2): alignment information
I X(3): batch trajectories
I Y: quality attributes

I X(3) contains batch trajectories

I We will work up to a multiblock PLS model for the quality
predictions
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Process background
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Process background

I Agricultural chemical production

I Wet “cake” (solid with embedded solvent) is charged to
system and dried

I The solvent is collected in an external, side tank

I Chemical changes occur in the solid phase during drying

I 3 phases in the recipe (more details later)

I Operators can adjust some parameters
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About the batch trajectories

I 10 trajectories measured per batch
I 3 phases: solvent collection, temperature ramp, cooling down
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Aligning the trajectories

I Done within each phase

I Transfer alignment information to Zop = X(2)
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Aligning the trajectories
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Aligning the trajectories

I Include time-distortion variable as a trajectory
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Multiblock: what goes in Z

Our Z blocks are just X(b) blocks in the multiblock algorithm.

Use any relevant information that is constant over the batch:
I Feed (raw material) properties and supplier code
I Feed composition (e.g. from the supplier’s certificate)
I Set up time
I Summary of any upstream operations on the raw material

I summary of raw values
I PCA or PLS scores from upstream units

I recipe information
I alignment summary (warping factors)
I operator identifiers or shift identifier
I Properties after adding materials, but before starting the

batch
I pH, NIR spectra, temperature

I ambient conditions
I idle times between phases of the batch
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A more complete analysis for product quality

I Zchem = X(1): chemical properties of the cake

I Zop = X(2): alignment information

I X = X(3): batch trajectories, including the time warping
trajectory
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Characterizing product quality: understanding the Y space

I Product quality is a multivariate property

I One should start with a PCA model of Y

I Look at this in the software

Batch disposition:

I Good batches: labeled 1 to 33

I Abnormal batches: labeled 34 to 61

I High residual solvent batches: labeled 62 to 71
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Effect of initial conditions on product quality

I Investigate the chemistry effect: Zchem effect on Y

I Weight of wet cake
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Multiblock PLS model

Create the following blocks:

I Timing block: all features related to timing in the batch

I Temperatures: all temperature related features

I Chemistry block: Z1, Z2, ... Z11 and WgtCake

I Impeller block: power, torque and agitator

I Pressure block: pressures and tank level variables

I Y-block: all Yi tags, including SolventConc
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