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Objectives for this class

1. Combine and learn from a variety of data sources

2. Track variation during a batch and how it affects product
quality

We will

» recap the alignment concept that was badly explained last
class

» introduce multiblock methods
» come back to batch monitoring

» end off with a case study that combines all these concepts



Recap: Alignment with an indicator variable

Read this slides in conjunction with the figures on the next 2 slides
» Choose a monotonic indicator variable to align against. For
example:
> reaction completion
> a calculated variable
» see other examples from last class

v

Sample evenly along the y-axis of this tag

v

Project across and down this monotonic tag onto all other
tags, e.g. the temperature tag

v

Resample these other tags at the new time points

v

Notice how the tag has been time-warped
We can also resample the “clock time” variable:

> this creates a new “trajectory” called warped time
> there is a warped time trajectory for each batch
> include this in the unfolded X matrix as a new tag

v



Recap: Alignment with an indicator variable
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Alignment recap

Sample evenly
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tag. In this
example itis a
calculated tag.
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Multiblock methods

The main concept
Divide your variables into blocks to get
» better model interpretation

> easier monitoring and improved fault detection

Why do this?: we'd like to understand the relationships between
several groups of possibly related datasets

Sometimes called



References

» Original concept: Wold et al., 1987 conference paper
» Improved fault detection: MacGregor et al., AIChE Journal

» Equivalence of MBPCA and PBPLS to PCA and PLS (very
important paper): Westerhuis, Kourti and MacGregor

» Process monitoring example with MB methods: Qin et al.

» Good overview of all multiblock methods: Smilde, Westerhuis
and de Jong, 2003
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Notation

X(l) / X(b) / X<B) Y(l) / Y(Q)

K, Ky Ks M, Mq

» Multiple X and Y blocks are available
» There is only one consistent dimension: N = observations
» We will only consider the case of one Y block (M; = M)
> Y will contain the usual quality variables
» We can have in X(®) for example:
» raw material properties (e.g. one block per material)
» NIR or UV-VIS spectra from each observation
» Unfolded batch data
» Measurements from each unit operation

Key point: you can have duplicated variables between blocks



Terminology and concepts

» Only have X blocks: multiblock PCA

» Add one or more Y blocks: then it becomes multiblock PLS
» Each block has: scores, loadings, SPE, T2, weights, VIP, R2

» We also have a “super-level” or “super-model” that
summarizes the blocks

11



SUM-PCA approach

Crude approach: push all blocks together and build PCA model.
K

X=|x®i/i x2 /x? [T,

Ki Ko Ks

/i PL i

> Investigate loadings, R?, etc separately for each block

» Block loadings, P(®), will not be orthogonal

» The super scores (the usual PCA scores) simply explain
variation for entire X

» No guarantee that each block will contribute to superscores

12



NIPALS review

Before we proceed, let's recap the NIPALS algorithm for PCA

Xy ta

Loadings are regression
coefficients (slopes) when
regressing columns in X onto t,

Scores are regression coefficients
(slopes) when regressing rows in
X onto p,

13



Consensus PCA (CPCA)

Left blank for you to draw the diagram

14



Consensus PCA steps

. Let té(,s) be any column from any block

. Regress column from ng) onto tgs) to obtain block loadings

p) = X(OTYE) 4O T )

(b)

3. Normalize p; "’ to unit length

. Calculate block’s score: t&?) = X(®)p{P) . ﬁ

» weight /K} prevents blocks with many terms (variables) in the

. . . . b
above linear combination from creating large score values, tg )

. Assemble block scores: T[as] = tgl) tgb) th)}

15



Consensus PCA steps

(s)

Ls] onto the superscore, t3”’ to calculate

6. Regress columns in T
the super-level’s loading:

pLs] _ T[;S] Ttgs)/ (tgs)Ttgs)>
(B x N)(N x1)

7. Normalize pLs] to unit length

[s] [s]

onto p; ).

8. Regress rows in T to get the super-scores t,(-,,s

) = Tolpll) (p!—f]Tp,[f])
(N x B)(Bx1)
denominator is usually = 1.0
9. Not converged? return back to step 2.
10. Converged? deflate each block with the superscore

X(®) = B &), 0T

3 —

16



Consensus PCA (CPCA)

> tgs)pgb) = block prediction from the superscore, tﬁf), not the

block’s score
>t

was calculated from the assembled scores, T‘[;s]

> 8 is just a weighted sum of these block scores (step 8):
called the consensus score

» Each entry in the superloading shows how much of block
b is used in the consensus score

» If a block behaves differently from the others, then its entry in

p) will be small

» Deflation by t(;) removes the superscore information, not the
block-score information.

» We get non-orthogonal block scores, but orthogonal
superscores

17



Computational simplification

Westerhuis, Kourti and MacGregor (1998) showed we don't need
to calculate CPCA as just described.

Much easier approach:
» Preprocess the data from each block as normal
» Post divide each block by /K and assemble:

X x(1)  x(2) x(B)
VK VKT VKs

» Same idea as block-scaling (covered earlier in the course)

» Calculate PCA in the usual way on X to obtain:

» scores will be identical to CPCA super scores, tgs),tgs), . ,tf)

> then follow steps 2, 3, 4, 5 and 6 from above
> results will be identical to the full approach

18
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In-class example
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In-class example

Load the LDPE data set and create a 2-block PCA model:
1. “Zone 1" block

> Inlet temperature
> Pressure
> All other variables ending in “1”

2. ‘Zone 2" block

> Inlet temperature
> Pressure
> All other variables ending in “2"

Build a multiblock CPCA model, using cross-validation to
determine A:

» examine scores for each block, and the superblock
» examine the loadings bi-plot for each block

» example the SPE time-series for each block and the superblock

20



What can go into each block?

>

vvyyVvyy

Raw material properties
» have one block per raw material

NIR or UV-VIS spectra (K® will be large)
Unfolded batch trajectories

Features extracted from batch trajectories
Data from sequential operations
» data from each step/operation/phase in its own block
» could be hard to ensure consistency from row to row
Large PCA and PLS models. E.g. petroleum refinery
» distillation column's data
» fractionator's data
» FCCU data
Judges: one block per judge
» each judge block contains the same columns (attributes)
Lagged variables
» e.g. a variable and all its lag per block
> or, all variables at a particular lag in each block

21



Multiblock PLS (MBPLS) concept
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MBPLS concept

We won't go through the detailed arrow pushing diagrams:
1. Start with an initial guess for u,
2. Perform a CPCA cycle through all the X(®) blocks and this u,

3. Assemble each block’s scores, t(ab), into TLS] = [tgl) th)}

4. Do a single NIPALS cycle for PLS between T,[-f] and Y for

super scores, t&
super weights, WLS], a B x 1 vector
Y-space loadings: c,, a M x 1 vector

Y-space scores: u,

vV v vyyvy

5. Repeat from step 2 until convergence for the at" component
6. Then deflate ... (next slide)

Once all components calculated, predict Y = tgs)cl + ...+ tl(qs)cA

23



MBPLS deflation

There are 2 choices to deflate each block:

1. using the block’s own score and loading

X(b) — x(b) _ tgb)p(b)T

a

» induces orthogonal scores and loadings at the block level

> super scores, tf.f), will not be orthogonal

2. using the super score and the block’s loading

X(b) — x(b) _ ()BT

> block level scores and loadings not orthogonal
> super scores are orthogonal

24



Using the MBPLS model in the future

1. Center and scale new data, xﬁg\),v, according to each block’s
preprocessing

2. Calculate block score = tgfﬁ)ew — xETw? . Kib

3. Assemble the block score vector: th,]neW = [t;(,%)ew, cee §ﬁ)ew

4. Calculate the super score: t;(,fr?ew = thLeWwLS]

5. Deflate each block: xﬁg\),v = xﬁg\),v — tgfgewp(ab) using superscore

6. Repeat from step 2 for all components a=1,2,... A

7. Predict: §Ynew = tfgewcl + ...+ tﬁﬁewcA

Also calculate SPE and T2 for each block, and for the super level

25



Which

deflation to use for MBPLS

Method 1

>

>

>

Removes all variation in tgb) from X(®)

Also, tgb) Wﬂ is the portion from block b used to predict Y

If WE]b ~ 0 (small super weight for block b for component a),
then tg,b) has not predictive ability for Y

Once removed (deflated), it cannot be used in subsequent
components

One advantage though: the block scores tend to be more
directly related to Y

Method 2

>

» Variation in tEf

Removes from X(b) the variation in tgs)

) is used to explain Y

26



Actual calculation for MBPLS

Westerhuis, Kourti and MacGregor (1998) showed we don't need
to calculate MBPLS as just described.

Easier approach:
» Preprocess the data from each block as normal
» Post divide each block by /K, and assemble:

X x@®  x(@2) X (B)
VK VKT VKs

» Calculate PLS in the usual way on X and Y to obtain:

scores are identical to MBPLS super scores, t(ls),tgs), . ,ti\s)
back-calculate the block weights, loadings and scores

then calculate the block SPE and T2

also calculate the super weights

results will be identical to the full approach

vV vy vy VvYyy

27
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Is all this complexity worth it?

Given the above derivations (especially if this is the first time
seeing it), one can rightly ask whether this is worth it.

» Consensus PCA can be calculated from ordinary PCA
» Multiblock PLS can be calculated from ordinary PLS

» This implies the predictive performance will be identical

Advantages are:

> better interpretation
» separate monitoring and fault detection for each block, since

» each block has its own SPE, T2, weights, loadings, VIP, R?
» super level: has SPE, T2, weights, VIP, R?

28



Better interpretation from multiblock models

FMC features example

29



Better monitoring from multiblock models

The problem: contribution plots from a single PCA or PLS model
often identify too many variables

» Complex systems with sub parts are split into blocks
» Even single units can be subdivided
» film extruder: melt zone, extrusion zone, casting, roll-up
» distillation column: bottom, feed and top trays, reboiler,
condenser
» Monitor the SPE's from each block, and the super block’s
SPE and T?

» When SPE limit is exceeded, only show contributions for the
block where the limit is exceeded

30



Sequential monitoring with multiblock models

Many processes consist of sequential steps. Example: 4 sequential
operations are used to produce the final product; lab values are
measured at the end. Two weeks from start to end.

—| XO |—| XO |—| X® |—| x® |—| Y

SPE OK SPE OK SPE exceeded

Use data from each stage to calculate block’'s SPE and T2

v

v

Proceed to the next stage if they are below the limit

v

One also obtains a prediction of Y after each stage
» the prediction accuracy should improve after each stage
If limit exceeded: use contributions, and judge the risk /cost of
continuing
> previous bad observations will help determine and understand
this risk

v

31



Batch PLS example: SBR

» Simulated data from first principles mechanistic model for
styrene butadiene rubber!

» Simulations are useful to make sure models identify what we
expect

» Simulation contained mostly “normal operating conditions”
» 2 problematic batches were simulated
> the same fault, but starting at different times

» Y-space quality variables:
1. Composition

Particle size

Branching

Cross linking

Polydispersity

kw0

lMore details can be found in Paul Nomikos' PhD thesis

32
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SBR: raw data
» Batches data: N = 53; Tags: K = 6; Time steps: J = 200
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SBR: build model
Approach:

» Normally | would start with a PCA on the X-space trajectories
to understand the trajectory relationships

» Then a PCA on the Y-space quality variables to see if there
are unusual batches

» In this data set: both these PCA models give the same
interpretation as PLS

» So we only show the PLS results here.

PLS results:
» Start with 2 to 3 components: just to see what's going on
> R, =245% and R}, = 12.7%
> R}, =65.3% and R§, = 6.9%
» Next: scores, weights, SPE, T2 ... all the usual PLS tools

34



SBR:

PLS score plot
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» Batches 34 and 37 were in fact the unsuccessful batches! This
shows promise.
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SBR: check SPE

» No problems picked up. This is the overall SPE, using data
from the entire batch.

36



SBR: understand R? breakdown in the X-space

0.8

07

0.6

0.5

04

0.3

0.2

0.1

R2 pervariable, per component

Reactor temperature Cooling vater temperature

Reactor jacket ternperature

Latex density

Conversion

Energy released

» LV1 and 2: latex density and conversion dominate the model
> R?is low at start because all batches are similar initially

» after centering and scaling there is just noise at the start.

37



SBR: PLS weights

Weights bar plot

0.06 T T T
Reactor temperature Cooling water temperature | Reactor facket temperature Latex dens| Energy released

0.04
002
=
0
0.02
-0.04
T T
Reactor temperature Cooling water temperature | Reactor facket temperature Latex density Comversion Energy release
o
=

From the above we can infer that:
» batch 37 had low t; because of
» below average latex density throughout the batch
» below average conversion throughout the batch

Confirmed in the raw data, and contribution plot for batch 37 .. nex



SBR: raw data for batch 37 (to confirm)

Latex density Conversion

1000 ! ! |

wol ™\ " ——
/

0.6

990 0.5

N 04 I
N\ 03

80
\ 0.2
a7 B

01
a70
| o
0 50 100 150 50 100 150

200

» Confirmed our interpretation with the raw data

» True cause (from simulation): 30% greater organic impurity
in butadiene feed, from the start of the batch



SBR: contribution plot for batch 37

228

Batch time repeated for each variable

» Contributions highest for the latex density and conversion, as
expected.



SBR: investigate batch 34

Batch 34 had high t:

» From weights plot for wy (earlier): we expect the problem to
be due to cooling water, jacket temperature, and below
average energy released in last half of the batch

» Contribution plot confirms this:

Energy released

Reactor temperature

248 730 734 673 771 87.9

Batch time repeated for each variable

This affected the density and conversion as well.
41



SBR: investigate batch 34
Raw data for this batch is highlighted

Reactor temperature Cooling water temperature Reaclor jacket temperature
50 s0
50.4 49
49
18
50.2 18
a7 fi o -
| - NS —
50 /F a6 47 f\
¥/ \ J
asty ki
49.8
50 100 150 200 50 100 150 200 50 100 150 200
Latex density Conversion Energy released
1000 000 f,
995 e .
- 0.6 ,/ 300 Ny R A
990 /
600
085 04 '
980 My 400}
S 02 }
975 \ 200
| |
50 100 150 200 50 100 150 200 50 100 150 200

Confirms the problem occurred. Same problem as before, 30%
greater organic impurity in butadiene feed, but only midway during
the batch progress.
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Interesting observation

» The same fault occurred in batch 34 and 37.
» But they show up in different locations in the score plot

» Because the time when the fault occurred is different

43



SBR: predictions from the model

We also get predictions from the batch PLS model for the 5

quality variables:

0.458
RMSEE = 0.001064 12650 pusee- 107
< . o o
S .
2 0458 cem e B 1260 -
<3 oo 8 P 3 .
£ 0454 Y o T 1255¢
o : o
3 0.452 $ 1250
15} o
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5 o L
& s . £ 1245
| | 1240/ : i : 1
0.45 0452 0454 0456 0.458 1240 1245 1250 1255 1260 1265
Observed: Composition Observed: Particle size
x10°
51 37}
RMSEE = 1.634e-07 > RMSEE = 0.02198
2 5 G 365
=
£ 2 .
Sa49 3 36!
g 2
=248 S b
S 9355
% 47 g as
a6 H
2 © 3.45
a o
45 3.4}

46 4.8 5
Observed: Cross linking y 109

34

3.5 36 37
Observed: Polydispersity

1.25

)

Predicted: Branching

o

115 12 1.25 13
Observed: Branching 19

Notice that batches
34 and 37 have poor
quality attributes
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Batch monitoring

Two types of monitoring

1. Off-line, post-batch monitoring

» Use all the data after the batch is complete: score plots, SPE
plots, contribution plots for new data, in the usual way

» Allows for early release of the batch to the next stage. Don't
have to wait for lab results if the batch is multivariately inside
the control limits

» We have already covered the material for this

» Risk: don't just use the SPE and scores at the end of the
batch: it is also how you go to the end that matters

2. On-line monitoring?
> real-time detection of problems as a new batch progresses
» many high value batch systems run in the order of weeks
» save money if we detect and correct these problems before the
batch end

2Reference: Paul Nomikos' PhD thesis

45
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Principle of real-time monitoring (and prediction)

>

vV v vV v Vv Y

While the batch progresses, at time step j, try to get the best
estimate of the scores at the end of the batch, t; e = 7

Xjnew = PjT;

€j new = Xjnew — )’Ej,new

SI:)Ej,new = e],_new €/ new

This is called the instantaneous SPE

€1:j,new = X1 new — I:)l:jTj

SPE calculated using data from start to time j: called the
evolving SPE

» Evolving SPE gets closer and closer to final SPE as j — J

> For batch PLS, we get a prediction: §jnew = 7/ C

J

Our real time monitoring and predictions hinge on the ability to
calculate the estimated end-point score, ijnew =T

46



Demonstration of batch monitoring

3 monitoring videos: good, poor, and a batch with a problem in
the middle

Consistency (SPE)

-
N

pd
=)

Hotelling's T?
o N B o o

Noow
S O

t, value
e e
o o O
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Time-varying monitoring limits

Limits for SPE and the scores vary with time3
» SPE limits

SPE; ~ gx*(h)

> g = o = premultiplier

2
> h— s _ degrees of freedom of x2(h)

v
m = mean(SPE;)
v = var(SPE;)

v

v

v

Use SPE values at time step j on all the good batches to
estimate g and h

» Score limits

> Assume t,; to be normally distributed, though a t-distribution
is more correct
» Estimate mean and variance at time j from good batches

3Derivations in Nomikos and MacGregor paper

48
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Real-time monitoring of a new batch

Batches

Batches

AN

K i
Dataat j=1 | / |Dataattimej|| / | Dataatj=/ | |
S ————— \
4 K K. A
P’ |

. L Estimated

New data available up to time j Future new data score

*T #T T

X; X; T,
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How to handle the missing future data

How to estimate the end-score: ) new = 7,7
1. Fill future value with zeros
» implies rest of batch runs at the average trajectory
2. Current deviations approach

» mean centered and scaled deviation at time j is copied and
pasted forward

» implies current deviations persist (MPC assumption)
3. Missing data handling

» Use one of the many missing data handling methods for
PCA/PLS

> score limits tend to have have variability at start, but quickly
stabilize

> single component projection, SCP: poor, but simple choice

> projection to model plane, PMP: improves SCP somewhat

> conditional mean replacement (CMR) or trimmed score
regression (TSR) are better (good)

50



How to handle the missing future data

From a monitoring perspective:

» doesn't really matter too much which missing data method is
used

» the control limits are a function of the method chosen

More details: Comparing different missing data approaches for
on-line monitoring and trajectory prediction (Garcia-Mufioz et al.)

51
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SBR:

Score: 1

Score: 2

scores over time for batch 37

Time-varying score: 1 for katch 37

20 40 60 80 100 120 140 160 180 200
Batchtime
Tirne-varying score: 2 for batch 37

» Highlights when the problem occurred: right at the start

» Was due to an impurity in the feed: consumed reactant and
lowers latex density and conversion

» SPE was within limits throughout the batch

52



SBR example: bad batch 34

Simulation introduced impurity in feed midway, during the batch

Time-varying SPE after 2 components

3 T T T T T T T
2L _
f.v.r-_'
m H (N - : : H
15 o
LA I B W PEVE RS St
L
N : :
'\ -
7 S SO SR S YO S
i i i i
100 1z0 140 180 180

Batch time

We will use the software to diagnose the contributions
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Case study: multiblock batch PLS model

This case study will introduce a number of concepts, by example.
We will see:

1. Multivariate characterization of product quality
Effect of initial conditions on product quality
Alignment of batch trajectories

Troubleshoot problems: poor product quality
Predictions of final quality attributes

ISR T o

Stagewise batch monitoring



Case study: multiblock batch PLS model

This case study is as complex as it gets:
» Multiblock:
» X): initial conditions (chemistry information)
» X@: alignment information
» X©3): batch trajectories
» Y: quality attributes

» X©3) contains batch trajectories

» We will work up to a multiblock PLS model for the quality
predictions
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Process background

1. Level in
collector

2. Differential pressure

3. Dryer pressure [] ’/

/_ Agitator

Collector tank

4. Power
5. Torque resistance

-) 6. Speed

[ —> Heating medium

Dryer tank

g 9. Dryer temperature SP
/ 10. Dryer temperature

7. Jacket temperature SP
8. Jacket temperature

56



Process background

v

Agricultural chemical production

v

Wet “cake” (solid with embedded solvent) is charged to
system and dried

The solvent is collected in an external, side tank
Chemical changes occur in the solid phase during drying

3 phases in the recipe (more details later)

vV v vY

Operators can adjust some parameters

57



About the batch trajectories

» 10 trajectories measured per batch
» 3 phases: solvent collection, temperature ramp, cooling down

90 F =
o .
80 ;».a" 4
oli | —Collector tank level i
+Agitator Speed
gofi |===-Dryer Temp SP |
......... Dryel’ Temp
50 [ B
40F 4
30 4
20~ 1
0 f




Aligning the trajectories

» Done within each phase

a0 Stage 1 Stage 2 Stage 3
T . T — I T

e —— |
80/ — Colector Tank Level i
?D»{ ------ Agitator Speed |

i — Temp SP

== Temp PV
60 } .
a0 |. -

40
30

20p

Time 1 Time 2

< > <

Time 3

1 1 1
50 100 150 200 250 300
TIME

» Transfer alignment information to Z,, = X(?

350
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Aligning the trajectories

Collector Tank % Level

Clock Time

120

100 /

/

K -' =
§ 8 y/
® /
= )
s 60 ’
5 / 7
z /
30 y
8 p =

nf /—

Ve
0
0 50 10 180 20 250 3w

Aligned Sample Number

Dryer Temparature (°C)

B 8 5 85 8 3 8 38

Dryar Temparaturs (°C)

=

150
Clock Time

100

150 200
Aligned Sample Number
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Aligning the trajectories

» Include time-distortion variable as a trajectory

280

200+

Clock Time
o
Q

Q
Q
T

S0F
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Multiblock: what goes in Z
Our Z blocks are just X(®) blocks in the multiblock algorithm.

Use

vvyyy

vvyyYyy

v

any relevant information that is constant over the batch:
Feed (raw material) properties and supplier code
Feed composition (e.g. from the supplier's certificate)

Set up time

Summary of any upstream operations on the raw material
» summary of raw values
» PCA or PLS scores from upstream units

recipe information
alignment summary (warping factors)

operator identifiers or shift identifier
Properties after adding materials, but before starting the
batch
» pH, NIR spectra, temperature
ambient conditions

idle times between phases of the batch
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A more complete analysis for product quality

> Zehem = X(B): chemical properties of the cake
> Zyp = X®): alignment information
» X = X®): batch trajectories, including the time warping

trajectory
e Variables
<
I
0 |
)
< I
Z lz il X1~ |Y
Q
ch op 2
s
Y |2
Initial conditions Operations Variable Final
and chemical data trajectories properties

properties
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Characterizing product quality: understanding the Y space

» Product quality is a multivariate property
» One should start with a PCA model of Y

» Look at this in the software

Batch disposition:
» Good batches: labeled 1 to 33
» Abnormal batches: labeled 34 to 61
» High residual solvent batches: labeled 62 to 71

64



Effect of initial conditions on product quality

> Investigate the chemistry effect: Z pen effect on'Y

> Weight of wet cake

e Variables
<
I
0 |
(]
< I
Z lz il X1~ |Y
[2a]
ch op 2
-’
v |2
Initial conditions Operations Variable Final
and chemical data trajectories properties

properties
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Multiblock PLS model

Create the following blocks:

v

Timing block: all features related to timing in the batch
Temperatures: all temperature related features
Chemistry block: Z1, Z2, ... Z11 and WgtCake

Impeller block: power, torque and agitator

Pressure block: pressures and tank level variables

vV v .v. v Y

Y-block: all Yi tags, including SolventConc
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