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Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0

Unported License. To view a copy of this license, please visit

http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

I to share - to copy, distribute and transmit the work

I to adapt - but you must distribute the new result under the
same or similar license to this one

I commercialize - you are allowed to create commercial
applications based on this work

I attribution - you must attribute the work as follows:
I “Portions of this work are the copyright of ConnectMV”, or
I “This work is the copyright of ConnectMV”
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We appreciate:

I if you let us know about any errors in the slides

I any suggestions to improve the notes

I telling us if you use the slides, especially commercially, so we
can inform you of major updates

I emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd
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Projects I

I Preferably combine it with your research (2 for 1)
I Chapter/section of your thesis
I Alternative way of looking at an existing data set

I Theoretical investigation
I Cross-validation (e.g. data randomization)
I Missing data handling alternatives
I Robust PCA and PLS
I Adaptive PCA and PLS (handles drift, disturbances)
I Orthogonal signal correction (OSC)

I Many data sets on the internet; freely available
I Kaggle.com data analysis competitions (win some money!)

I Prediction credit score
I Predict if a car will be a “kick” (bad purchase)
I Predict when supermarket shoppers will next visit and how

much they will spend
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Projects II
I Your own data is always the most interesting. Some ideas:

I Image analysis data: identifying defects reliably
I Soft sensor development (e.g. distillation column). Open- vs

closed-loop
I Multiblock data analysis (e.g. lab data from multiple

steps/instruments)
I Control system performance: data from closed-loop systems to

determine if performance has degraded
I QSAR: review literatures and compare alternative approaches
I Financial data: some examples freely available online.

I 1 page outline of ideas: 4 November, or earlier (email is OK)

I Class presentations of 15 minutes: 9 and 16 December 2011
I Report

I printed version and PDF version
I Due 9 January 2012 (tentative)
I No more than 25 pages, all included.
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Presentation expectations

I Should clearly state objectives

I Describe why you have selected preprocessing

I Any special pre-treatment to the data?

I Why PCA and/or PLS is appropriate to achieving your
objective

I What was learned that was new?

I How was objective achieved with the model

I 12 minutes of slides

I 8 minutes of questions
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Presentation dates

9 December

I Cheng

I Mudassir

I Harry

I Matthew

I Sharleen

I Caroline

I Ran

I Jake

16 December

I Brandon

I Yasser

I Rummana

I Lily

I Yanan

I Pavan

I Abdul
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Two-blocks instead of one

Discussion on the board
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* categorical variables * process measurements * raw material
properties from certificates of analysi
Y: quality of product (continuous measurements) outcome from a
process (good/OK/bad) concentration values from a sensory panel
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Review: Covariance

Cylinder Cylinder Room

temperature (K) pressure (kPa) humidity (%)

273 1600 42
285 1670 48
297 1730 45
309 1830 49
321 1880 41
333 1920 46
345 2000 48
357 2100 48
369 2170 45
381 2200 49

Mean 327 1910 46.1
Variance 1188 38940 7.3
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Review: Covariance

Formal definition for covariance

Cov {x , y} = E {(x − x)(y − y)} where E {z} = z

I Covariance with itself = variance:
Cov {x , x} = V(x) = E {(x − x)(x − x)}

I (Co)variance of centered vector = (co)variance of uncentered
vector

I Covariance describes overall tendency of 2 variables
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Review: Covariance

Formal definition for covariance

Cov {x , y} = E {(x − x)(y − y)} where E {z} = z

Covariance matrix for example:

I variances are on the diagonal

I covariances on the off-diagonals (symmetric matrix!)

Covariance =


Temperature Pressure Humidity

Temperature 1188 6780 35.4
Pressure 6780 38940 202
Humidity 35.4 202 7.3


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Review: Correlation

I (Co)variance depends on units: e.g. different covariance for
grams vs kilograms

I Correlation removes the scaling effect:

Formal definition for correlation

r(x , y) =
E {(x − x)(y − y)}√

V {x} V {y}
=

Cov {x , y}√
V {x} V {y}

I Divides by the units of x and y : dimensionless result
I −1 ≤ r(x , y) ≤ 1

Correlation =


Temperature Pressure Humidity

Temperature 1.0 0.997 0.380
Pressure 0.997 1.0 0.379
Humidity 0.380 0.379 1.0


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Review: Least squares

We have 2 vectors of data, x and y. Presume the relationship
between them:
y = β0 + β1x + ε

ε term:
I unmodelled components of the linear model
I measurement error
I other random variation

Important: error is from y , not from x .

We want parameter estimates:

I b0 = β̂0

I b1 = β̂1

I e = ε̂

I
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Review: Least squares

To make derivations easier here, we will center both x and y.

Least squares model is: y = β1x + ε

We can always recover the intercept, if we need it:

I b0 = y − b1x

We want predictions from our model:

I For a new x-observation: xnew

I prediction is = ŷnew = b1xnew
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Review: Least squares
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Review: solving the least squares model

Has to be an optimization problem: minimizing the sum of
squared errors

I Easy to solve! Unconstrained optimization problem

min f (b1) =
n∑

i=1

(ei )
2 =

n∑
i=1

(yi − b1xi )
2

∂f (b1)

∂b1
= −2

∑n
i (xi )(yi − b1xi ) = 0

b1 =

∑
i (xiyi )∑
i (xi )

2
=

x′y

x′x
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Remarks

1.
∑

i ei = 0

2. Easily prove that
∑

i (xiei ) = xTe = 0
I The residuals are uncorrelated with the input variables, x
I There is no information in the residuals that is in the x’s

3. Prove and interpret that
∑

i (ŷiei ) = ŷTe = 0
I The fitted values are uncorrelated with the residuals
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Notation for MLR

The general linear model for observation i

yi = β1x1 + β2x2 + . . . + βKxK + εi

yi = [x1, x2, . . . , xK ]


β1

β2
...

βK

 + εi

yi = xT︸︷︷︸
(1×K)

β︸︷︷︸
(K×1)

+ εi

I where each xk column (variable) and the y column have been
centered
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Notation for MLR
y1

y2
...

yN

 =


x1,1 x1,2 . . . x1,K

x2,1 x2,2 . . . x2,K
...

...
. . .

...
xN,1 xN,2 . . . xN,K




b1

b2
...

bK

 +


e1

e2
...

eN


y = Xb + e

I y: N × 1

I X: N × k

I b: K × 1

I e: N × 1
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Estimating the model parameters via optimization

Objective function: minimize sum of squares of the errors

f (b) = eTe

= (y − Xb)T (y − Xb)
= yTy − 2yTXb + bXTXb

I Solving
f (b)

∂b
= 0 gives b =

(
XTX

)−1
XTy

I V(b) = (X′X)−1 S2
E

I SE =

√
e′e

N − K
≈ standard deviation of the residuals
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Interpretation of the model coefficients

The coefficients have meaning

y = b1x1 + b2x2
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Least squares: What can go wrong?

1. Missing values

I ŷnew = b1x1,new + b2x2,new + . . . + bKxK ,new

I There is nothing we can do if any xk,new terms go missing
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Least squares: What can go wrong?

2. Highly correlated variables in X

I b =
(
XTX

)−1
XTy

I V(b) = (X′X)−1 S2
E

I Inflated confidence
intervals for b

I Cannot interpret
coefficients reliably

Leads to unstable regression coefficients. Example on your own.
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Least squares: What can go wrong?

3. Noisy x-variables

I LS model is: y = β1x + ε

I Note that model assumes error in y.

I We say, “LS has a model for error” in the y’s.
I Or alternatively, “model for error in the y-space”. This

means:
I We can always compare our y error to SE

I see if error is large; then try to find out why

I LS assumes that x is exact (no model for x-space error)
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Least squares: What can go wrong?

4. Non-sensical input (related to previous point)

I Extreme noise in x’s, or garbage input

I Will go undetected, and you will always get a prediction:

I ŷnew = b1x1,new + b2x2,new + . . . + bKxK ,new

I There is no x-space error model to catch these problems
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Least squares: What can go wrong?

Misleading strategy that’s often-used by people:
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Other problems with linear regression

I MLR requires N > K . Problem with spectral data, and other
data sets.

I If you have multiple Y variables: one MLR model per column
in Y
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Principal component regression (PCR)

Two step model:

1. T = XP + E ordinary PCA

2. ŷ = Tb and can be solved as b = (T′T)−1 T′y
Regress the y onto the scores T to get regression coefficients b
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Principal component regression (PCR)

Advantages:

I T is orthogonal: (T′T)−1 easily calculated

I so less need for variable selection to get a full rank X

I PCA step handles missing values

I T has much less error than X

I Best part: a free consistency check from T 2 and SPE

I PCA step uses fewer variables (A < K ), we will likely meet
the N > K requirement in the regression step

Important point

If PCA step uses A = K , then predictions from PCR are same as
MLR
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Principal component regression (PCR)

Using a PCR model on new data

1. Center and scale the raw data as usual for PCA: x′new

2. Calculate the new scores: t′new = x′newP

3. Consistency check: are SPEnew and T 2
new below the limits?

4. Use the MLR prediction: ŷnew = t′newb
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PCR: disadvantages

1. PCA components calculated without knowledge of y
I not necessarily predictive of y
I because steps 1 and steps 2 are performed sequentially

2. As a result, we often need to add additional, noisy
components in PCA step

I Add components beyond usual cross-validation
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Simple PLS (SIMPLS)

1. PLS scores explain X:
I ta = Xawa for the X-space
I max : t′

ata subject to w′
awa = 1.0

2. PLS scores also explain Y:
I ua = Yaca for the Y-space
I max : u′

aua subject to c′
aca = 1.0

3. PLS maximizes relationship between X- and Y-space
I maximizes covariance: Cov (ta,ua)

I Cov (ta,ua) = Corr (ta,ua) ·
√

t′
ata ·

√
u′

aua ·
1
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PLS: geometric interpretation
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NIPALS algorithm for PLS
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The weights in PLS

I Scores are calculated from deflated matrices:
I t1 = Xa=0w1 = X0w1

I t2 = Xa=1w2 = (X0 − t1p1)w2

I w2: relates score t2 to Xa=1, the deflated matrix
I This is hard to interpret. We would like instead:

I t1 = Xa=0w∗1 = X0w∗1

I t2 = Xa=0w∗2 = X0w∗2

I etc

I We calculate matrix W∗ = W (P′W)−1

I So T = X0W∗, or simply: T = XW∗

I w∗1 = w1

I w∗a 6= wa for a > 1

I We get a clearer interpretation of the variable relationships
using W∗ instead of W
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Using PLS on new data

t1,new = x′neww1

x′new = x′new − t1,newp′1 (deflate)
t2,new = x′neww2

x′new = x′new − t2,newp′2
etc

Collect all the ta,new score values in tnew

Alternatively use tnew = x′newW∗ to get tnew without deflation
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Using PLS on new data

ŷ′new = t′newC′

ŷ′new = x′newW∗C′

I Then uncenter and unscale the ŷ′new
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Cross-validation to calculate Q2

Similar procedure as with PCA

Split the rows in X and Y into G groups.

G = 3 in this illustration

I Typically G ≈ 7 [ProSensus,
Simca-P use G = 7]

I Rows can be randomly grouped, or

I ordered e.g. 1, 2, 3, 1, 2, 3, ...

I ordered e.g. 1, 1, 2, 2, 3, 3, ...
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Cross-validation concept for PLS

Fit a PLS model using X(−1) and Y(−1); use X(1) as testing data

F(1) = prediction error for testing group 1 ©ConnectMV, 2011 40



Cross-validation concept for PLS

Fit a PLS model using X(−2) and Y(−2); use X(2) as testing data

F(2) = prediction error for testing group 2 ©ConnectMV, 2011 41



Cross-validation concept for PLS

Fit a PLS model using X(−3) and Y(−3); use X(3) as testing data

F(3) = prediction error for testing group 3 ©ConnectMV, 2011 42



Cross-validation concept for PLS

I PRESS = ssq(F(1)) + ssq(F(2)) + . . . + ssq(F(G))

I PRESS = prediction error sum of squares from each
prediction group

I Q2 = 1− V(predicted FA)

V(Y)
= 1− PRESS

V(Y)

I Q2 is calculated and interpreted in the same way as R2

I Q2
k can be calculated for variable k = 1, 2, . . . K

I You should always find Q2 ≤ R2

I If Q2 ≈ R2: that component is useful and predictive in the
model

I If Q2 is “small”: that component is likely fitting noise

To read: Esbensen and Geladi, 2010, “Principles of proper
validation”
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PLS plots

I Score plots: t and u show relationship between rows

I Weight plots: w: relationship between X columns

I Loading plots: c: relationship between Y variables

I Weight and loading plots: w∗c: relationship between X and Y

I SPE plots (X-space, Y-space)

I Hotelling’s T 2 plot

I Coefficient plots

I VIP plot

I R2 plots (X-space, Y-space, per variable)
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Variable importance to prediction

Important variables in the model?
I Have large (absolute) weights: why?
I Come from a component that has a high R2

Combining these two concepts we calculate for each variable:

Importance of variable k using A components in PLS

VIP2
A,k =

K

SSX0 − SSXA
·

A∑
a=1

(SSXa−1 − SSXa) W 2
a,k

I SSXa = sum of squares in the X matrix after a components
I SSXa−1−SSXa

SSXA
= incremental R2 for ath component

I SSX0−SSXA
SSXA

= R2 for model using A components

I Messy, but you can show that
∑

k VIP2
A,k = K

I Reasonable cut-off = 1
I VIP for PCA models: use P2

a,k instead of W 2
a,k
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Variable importance to prediction
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Coefficient plot

ŷ′new = t′newC′

ŷ′new = x′newW∗C′

ŷ′new = x′newβ
I β is a K ×M matrix
I Each column in β contains the regression coefficients for

column m from Y matrix
I Never implement PLS using β matrix
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Coefficient plot

For a single y -variable:

I ŷ = β1x1 + β2x2 + . . . + βKxK

I where xk and ŷ are the preprocessed values
I Again – never implement PLS this way.
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Coefficient plot

For all Y-variables
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Jackknifing

We re-calculate the model G + 1 times during cross-validation:

I G times, once per group
I The “+1” is from the final round, where we use all

observations

We get G + 1 estimates of the model parameters:

I loadings
I VIP values
I coefficients

for every variable (1, 2, . . . K ).

Calculate “reliability intervals” (don’t call them confidence
intervals)

I Martens and Martens (paper 43) describe jackknifing.
I Efron and Tibshirani describe the bootstrap and jackknife.
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