Latent Variable Methods Course Learning from data

Instructor: Kevin Dunn kevin.dunn@connectmv.com http://connectmv.com

© Kevin Dunn, ConnectMV, Inc. 2011

Revision: 268:adfd compiled on 15-12-2011

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/

This license allows you:

- to share to copy, distribute and transmit the work
- to adapt but you must distribute the new result under the same or similar license to this one
- commercialize you <u>are allowed</u> to create commercial applications based on this work
- attribution you must attribute the work as follows:
 - "Portions of this work are the copyright of ConnectMV", or
 - "This work is the copyright of ConnectMV"

We appreciate:

- if you let us know about any errors in the slides
- any suggestions to improve the notes
- telling us if you use the slides, especially commercially, so we can inform you of major updates
- emailing us to ask about different licensing terms

All of the above can be done by writing us at

courses@connectmv.com

If reporting errors/updates, please quote the current revision number: 268:adfd

Projects I

- ▶ Preferably combine it with your research (2 for 1)
 - Chapter/section of your thesis
 - Alternative way of looking at an existing data set
- Theoretical investigation
 - Cross-validation (e.g. data randomization)
 - Missing data handling alternatives
 - Robust PCA and PLS
 - Adaptive PCA and PLS (handles drift, disturbances)
 - Orthogonal signal correction (OSC)
- Many data sets on the internet; freely available
 - Kaggle.com data analysis competitions (win some money!)
 - Prediction credit score
 - Predict if a car will be a "kick" (bad purchase)
 - Predict when supermarket shoppers will next visit and how much they will spend

Projects II

- > Your own data is always the most interesting. Some ideas:
 - Image analysis data: identifying defects reliably
 - Soft sensor development (e.g. distillation column). Open- vs closed-loop
 - Multiblock data analysis (e.g. lab data from multiple steps/instruments)
 - Control system performance: data from closed-loop systems to determine if performance has degraded
 - ▶ QSAR: review literatures and compare alternative approaches
 - Financial data: some examples freely available online.
- ▶ 1 page outline of ideas: 4 November, or earlier (email is OK)
- Class presentations of 15 minutes: 9 and 16 December 2011
- Report
 - printed version and PDF version
 - Due 9 January 2012 (tentative)
 - No more than 25 pages, all included.

Presentation expectations

- Should clearly state objectives
- Describe why you have selected preprocessing
- Any special pre-treatment to the data?
- Why PCA and/or PLS is appropriate to achieving your objective
- What was learned that was new?
- How was objective achieved with the model
- 12 minutes of slides
- 8 minutes of questions

Presentation dates

9 December

- Cheng
- Mudassir
- Harry
- Matthew
- Sharleen
- Caroline
- Ran
- Jake

16 December

- Brandon
- Yasser
- Rummana
- Lily
- Yanan
- Pavan
- Abdul

Two-blocks instead of one

Discussion on the board

* categorical variables * process measurements * raw material properties from certificates of analysi

Y: quality of product (continuous measurements) outcome from a process (good/OK/bad) concentration values from a sensory panel

Review: Covariance

	Cylinder	Cylinder	Room humidity (%)	
	temperature (K)	pressure (kPa)		
	273	1600	42	
	285	1670	48	
	297	1730	45	
	309	1830	49	
	321	1880	41	
	333	1920	46	
	345	2000	48	
	357	2100	48	
	369	2170	45	
	381	2200	49	
Mean	327	1910	46.1	
Variance	1188	38940	7.3	

Review: Covariance

Formal definition for covariance $\operatorname{Cov} \{x, y\} = \mathcal{E} \{(x - \overline{x})(y - \overline{y})\}$ where $\mathcal{E} \{z\} = \overline{z}$

- Covariance with itself = variance: $Cov \{x, x\} = \mathcal{V}(x) = \mathcal{E} \{(x - \overline{x})(x - \overline{x})\}$
- (Co)variance of centered vector = (co)variance of uncentered vector
- Covariance describes overall tendency of 2 variables

Review: Covariance

Formal definition for covariance $\operatorname{Cov} \{x, y\} = \mathcal{E} \{(x - \overline{x})(y - \overline{y})\}$ where $\mathcal{E} \{z\} = \overline{z}$

Covariance matrix for example:

- variances are on the diagonal
- covariances on the off-diagonals (symmetric matrix!)

	Γ	Temperature	Pressure	Humidity]
Covariance =	Temperature	1188	6780	35.4
	Pressure	6780	38940	202
	Humidity	35.4	202	7.3

Review: Correlation

- (Co)variance depends on units: e.g. different covariance for grams vs kilograms
- Correlation removes the scaling effect:

Formal definition for correlation

$$r(x,y) = \frac{\mathcal{E}\left\{(x-\overline{x})(y-\overline{y})\right\}}{\sqrt{\mathcal{V}\left\{x\right\}\mathcal{V}\left\{y\right\}}} = \frac{\operatorname{Cov}\left\{x,y\right\}}{\sqrt{\mathcal{V}\left\{x\right\}\mathcal{V}\left\{y\right\}}}$$

Divides by the units of x and y: dimensionless result
−1 ≤ r(x, y) ≤ 1

	Γ	Temperature	Pressure	Humidity]
Correlation =	Temperature	1.0	0.997	0.380
	Pressure	0.997	1.0	0.379
	Humidity	0.380	0.379	1.0

Review: Least squares

We have 2 vectors of data, ${\boldsymbol x}$ and ${\boldsymbol y}.$ Presume the relationship between them:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \epsilon$$

 ϵ term:

- unmodelled components of the linear model
- measurement error
- other random variation

Important: error is from *y*, not from *x*.

We want parameter estimates:

$$\blacktriangleright b_0 = \hat{\beta}_0$$

$$\blacktriangleright b_1 = \hat{\beta}_1$$

•
$$e = \hat{\epsilon}$$

Review: Least squares

To make derivations easier here, we will center both \mathbf{x} and \mathbf{y} .

Least squares model is: $\mathbf{y} = \beta_1 \mathbf{x} + \epsilon$

We can always recover the intercept, if we need it:

$$\flat \ b_0 = \overline{\mathbf{y}} - b_1 \overline{\mathbf{x}}$$

We want predictions from our model:

For a new x-observation: x_{new}

• prediction is
$$= \hat{y}_{new} = b_1 x_{new}$$

Review: Least squares

Review: solving the least squares model

Has to be an optimization problem: **minimizing** the sum of squared errors

Easy to solve! Unconstrained optimization problem

min
$$f(b_1) = \sum_{i=1}^n (e_i)^2 = \sum_{i=1}^n (y_i - b_1 x_i)^2$$

0 011

$$\frac{\partial f(b_1)}{\partial b_1} = -2\sum_i^n (x_i)(y_i - b_1 x_i) = 0$$
$$b_1 = \frac{\sum_i (x_i y_i)}{\sum_i (x_i)^2} = \frac{\mathbf{x}' \mathbf{y}}{\mathbf{x}' \mathbf{x}}$$

Remarks

1. $\sum_{i} e_{i} = 0$

- 2. Easily prove that $\sum_{i} (x_i e_i) = \mathbf{x}^T \mathbf{e} = 0$
 - The residuals are uncorrelated with the input variables, x
 - There is no information in the residuals that is in the x's
- 3. Prove and interpret that $\sum_{i} (\hat{y}_{i} e_{i}) = \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{e} = 0$
 - The fitted values are uncorrelated with the residuals

Notation for MLR

The general linear model for observation i

$$y_{i} = \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{K}x_{K} + \epsilon_{i}$$
$$y_{i} = [x_{1}, x_{2}, \dots, x_{K}]\begin{bmatrix}\beta_{1}\\\beta_{2}\\\vdots\\\beta_{K}\end{bmatrix} + \epsilon_{i}$$
$$y_{i} = \underbrace{x^{T}}_{(1 \times K)}\underbrace{\beta}_{(K \times 1)} + \epsilon_{i}$$

where each x_k column (variable) and the y column have been centered

Notation for MLR

1

$$\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,K} \\ x_{2,1} & x_{2,2} & \dots & x_{2,K} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,K} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{K} \end{bmatrix} + \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$
$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$
$$\mathbf{K}$$
$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$
$$\mathbf{K}$$
$$\mathbf{b} : K \times 1$$
$$\mathbf{b} : K \times 1$$
$$\mathbf{b} : K \times 1$$
$$\mathbf{N} = : N \times 1$$

Estimating the model parameters via optimization

Objective function: minimize sum of squares of the errors

$$f(\mathbf{b}) = \mathbf{e}^{T} \mathbf{e}$$

= $(\mathbf{y} - \mathbf{X}\mathbf{b})^{T} (\mathbf{y} - \mathbf{X}\mathbf{b})$
= $\mathbf{y}^{T} \mathbf{y} - 2\mathbf{y}^{T} \mathbf{X}\mathbf{b} + \mathbf{b}\mathbf{X}^{T} \mathbf{X}\mathbf{b}$
> Solving $\frac{f(\mathbf{b})}{\partial \mathbf{b}} = 0$ gives $\mathbf{b} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$
> $\mathcal{V}(\mathbf{b}) = (\mathbf{X}' \mathbf{X})^{-1} S_{E}^{2}$

• $S_E = \sqrt{\frac{\mathbf{e}^{\prime} \mathbf{e}}{N - K}} \approx$ standard deviation of the residuals

Interpretation of the model coefficients

The coefficients have meaning

 $y = b_1 x_1 + b_2 x_2$

- 1. Missing values
 - $\blacktriangleright \hat{y}_{\text{new}} = b_1 x_{1,\text{new}} + b_2 x_{2,\text{new}} + \ldots + b_K x_{K,\text{new}}$
 - There is nothing we can do if any $x_{k,\text{new}}$ terms go missing

2. Highly correlated variables in \boldsymbol{X}

Leads to unstable regression coefficients. Example on your own.

- 3. Noisy x-variables
 - LS model is: $\mathbf{y} = \beta_1 \mathbf{x} + \epsilon$
 - Note that model assumes error in **y**.
 - ▶ We say, "LS has a model for error" in the **y**'s.
 - Or alternatively, "model for error in the y-space". This means:
 - We can always compare our y error to S_E
 - see if error is large; then try to find out why
 - LS assumes that x is exact (no model for x-space error)

- 4. Non-sensical input (related to previous point)
 - Extreme noise in x's, or garbage input
 - ▶ Will go undetected, and you will always get a prediction:

$$\mathbf{\hat{y}}_{new} = b_1 x_{1,new} + b_2 x_{2,new} + \ldots + b_K x_{K,new}$$

► There is no x-space error model to catch these problems

Misleading strategy that's often-used by people:

Other problems with linear regression

- MLR requires N > K. Problem with spectral data, and other data sets.
- If you have multiple Y variables: one MLR model per column in Y

Principal component regression (PCR)

Two step model:

- 1. $\mathbf{T} = \mathbf{XP} + \mathbf{E}$ ordinary PCA
- 2. $\hat{\mathbf{y}} = \mathbf{T}\mathbf{b}$ and can be solved as $\mathbf{b} = (\mathbf{T}'\mathbf{T})^{-1}\mathbf{T}'\mathbf{y}$ Regress the \mathbf{y} onto the scores \mathbf{T} to get regression coefficients \mathbf{b}

Principal component regression (PCR)

Advantages:

- **T** is orthogonal: $(\mathbf{T}'\mathbf{T})^{-1}$ easily calculated
- ▶ so less need for variable selection to get a full rank X
- PCA step handles missing values
- T has much less error than X
- **Best part**: a free consistency check from T^2 and SPE
- ► PCA step uses fewer variables (A < K), we will likely meet the N > K requirement in the regression step

Important point

If PCA step uses A = K, then predictions from PCR are same as MLR

Principal component regression (PCR)

Using a PCR model on new data

- 1. Center and scale the raw data as usual for PCA: \mathbf{x}'_{new}
- 2. Calculate the new scores: ${\bm t}_{\text{new}}' = {\bm x}_{\text{new}}' {\bm P}$
- 3. Consistency check: are SPE_{new} and T_{new}^2 below the limits?
- 4. Use the MLR prediction: $\hat{y}_{new} = \mathbf{t}'_{new}\mathbf{b}$

PCR: disadvantages

- 1. PCA components calculated without knowledge of **y**
 - not necessarily predictive of y
 - because steps 1 and steps 2 are performed sequentially
- 2. As a result, we often need to add additional, noisy components in PCA step
 - Add components beyond usual cross-validation

Simple PLS (SIMPLS)

PLS: geometric interpretation

NIPALS algorithm for PLS

The weights in PLS

Scores are calculated from deflated matrices:

$$\mathbf{t}_1 = \mathbf{X}_{a=0} \mathbf{w}_1 = \mathbf{X}_0 \mathbf{w}_1$$

$$\bullet \mathbf{t}_2 = \mathbf{X}_{a=1}\mathbf{w}_2 = (\mathbf{X}_0 - \mathbf{t}_1\mathbf{p}_1)\mathbf{w}_2$$

• \mathbf{w}_2 : relates score \mathbf{t}_2 to $\mathbf{X}_{a=1}$, the deflated matrix

This is hard to interpret. We would like instead:

• We calculate matrix
$$\mathbf{W}^* = \mathbf{W} \left(\mathbf{P}' \mathbf{W} \right)^{-1}$$

So
$$\mathbf{T} = \mathbf{X}_0 \mathbf{W}^*$$
, or simply: $\mathbf{T} = \mathbf{X} \mathbf{W}^*$

We get a clearer interpretation of the variable relationships using W* instead of W

Using PLS on new data

Collect all the $t_{a,new}$ score values in \mathbf{t}_{new}

Alternatively use $t_{\mathsf{new}} = x_{\mathsf{new}}' W^*$ to get t_{new} without deflation

Using PLS on new data

• Then uncenter and unscale the $\hat{\mathbf{y}}'_{\text{new}}$

Cross-validation to calculate Q^2

Similar procedure as with PCA

Split the rows in X and Y into G groups.

G = 3 in this illustration

- ► Typically G ≈ 7 [ProSensus, Simca-P use G = 7]
- Rows can be randomly grouped, or
- ▶ ordered *e.g.* 1, 2, 3, 1, 2, 3, ...
- ▶ ordered *e.g.* 1, 1, 2, 2, 3, 3, ...

Fit a PLS model using $\mathbf{X}_{(-1)}$ and $\mathbf{Y}_{(-1)}$; use $\mathbf{X}_{(1)}$ as testing data

 $\mathbf{F}_{(1)} =$ prediction error for testing group 1

Fit a PLS model using $X_{(-2)}$ and $Y_{(-2)}$; use $X_{(2)}$ as testing data

 $\mathbf{F}_{(2)} =$ prediction error for testing group 2

Fit a PLS model using $X_{(-3)}$ and $Y_{(-3)}$; use $X_{(3)}$ as testing data

 $\mathbf{F}_{(3)} =$ prediction error for testing group 3

- $\blacktriangleright \mathsf{PRESS} = \mathsf{ssq}(\mathbf{F}_{(1)}) + \mathsf{ssq}(\mathbf{F}_{(2)}) + \ldots + \mathsf{ssq}(\mathbf{F}_{(G)})$
- PRESS = prediction error sum of squares from each prediction group

•
$$Q^2 = 1 - \frac{\mathcal{V}(\text{predicted } \mathbf{F}_A)}{\mathcal{V}(\mathbf{Y})} = 1 - \frac{\text{PRESS}}{\mathcal{V}(\mathbf{Y})}$$

• Q^2 is calculated and interpreted in the same way as R^2

- Q_k^2 can be calculated for variable k = 1, 2, ..., K
- You should always find $Q^2 \leq R^2$
- If $Q^2 \approx R^2$: that component is useful and predictive in the model
- ▶ If Q^2 is "small": that component is likely fitting noise

To read: Esbensen and Geladi, 2010, "Principles of proper validation"

PLS plots

- Score plots: t and u show relationship between rows
- ► Weight plots: w: relationship between X columns
- Loading plots: c: relationship between Y variables
- ▶ Weight and loading plots: **w*****c**: relationship between **X** and **Y**
- SPE plots (X-space, Y-space)
- Hotelling's T² plot
- Coefficient plots
- VIP plot
- R² plots (X-space, Y-space, per variable)

Variable importance to prediction

Important variables in the model?

- Have large (absolute) weights: why?
- Come from a component that has a high R²

Combining these two concepts we calculate for each variable:

Importance of variable k using A components in PLS

$$VIP_{A,k}^{2} = \frac{K}{SSX_{0} - SSX_{A}} \cdot \sum_{a=1}^{A} (SSX_{a-1} - SSX_{a}) W_{a,k}^{2}$$

SSX_a = sum of squares in the X matrix after a components
SSX_{a-1}-SSX_a = incremental R² for ath component
SSX_a-SSX_A = R² for model using A components
Messy, but you can show that ∑_k VIP²_{A,k} = K
Reasonable cut-off = 1
VIP for PCA models: use P²_{a,k} instead of W²_{a,k}

Variable importance to prediction

Coefficient plot

- β is a K × M matrix
- Each column in β contains the regression coefficients for column m from Y matrix
- Never implement PLS using β matrix

Coefficient plot

For a single y-variable:

- $\flat \ \hat{y} = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_K x_K$
- where x_k and \hat{y} are the preprocessed values
- Again never implement PLS this way.

Coefficient plot

Jackknifing

We re-calculate the model G + 1 times during cross-validation:

- ► *G* times, once per group
- ► The "+1" is from the final round, where we use all observations

We get G + 1 estimates of the model parameters:

- Ioadings
- VIP values
- coefficients

for every variable $(1, 2, \ldots K)$.

Calculate "reliability intervals" (don't call them confidence intervals)

- ► Martens and Martens (paper 43) describe jackknifing.
- Efron and Tibshirani describe the bootstrap and jackknife.