Tutorial 5 - 2010 - Solution/Question 3

From Process Model Formulation and Solution: 3E4
Jump to navigation Jump to search
← Question 2 (previous step) Back to all questions Next step: Question 4 →

<rst> <rst-options: 'toc' = False/> <rst-options: 'reset-figures' = False/>

Question 3 [1]

==
  1. . Write the Newton-Raphson iteration formula that you would use to solve this nonlinear equation.
  2. . Apply 3 iterations of this formula, also starting from :math:`T = 380` K, and calculate the error tolerances.

Solution


  1. . The Newton-Raphson algorithm is given on slide 15-17 of the *Section C: Nonlinear Algebraic Equations* slide set.

To apply the Newton-Raphson method we must first calculate the derivative of our function:

.. math::

f'(T) = - 0.26 + 3.38\text{x}10^{-3}T - \frac{1.5\text{x}10^{5}}{T^{2}}

Therefore the Newton-Raphson iteration formula we use is the following:

.. math::

T^{(k+1)} = T^{(k)} - \frac{f(T^{(k)})}{f'(T^{(k)})} = T^{(k)} - \frac{- 24097 - 0.26T + 1.69\text{x}10^{-3}T^{2} + \frac{1.5\text{x}10^{5}}{T} - (-23505)}{- 0.26 + 3.38\text{x}10^{-3}T - \frac{1.5\text{x}10^{5}}{T^{2}}}

  1. .

We start with :math:`T^{(0)} = 380 K`:

.. math::

ΔHr0(T(0))=240970.26(T(0))+1.69x103(T(0))2+1.5x105(T(0))ΔHr0(T(0))=240970.26(380)+1.69x103(380)2+1.5x105(380)ΔHr0(T(0))=23557.02715

*ITERATION 1*

.. math::

T(1)=T(0)240970.26T(0)+1.69x103(T(0))2+1.5x105T(0)(23505)0.26+3.38x103T(0)1.5x105(T(0))2T(1)=(380)240970.26(380)+1.69x103(380)2+1.5x105(380)(23505)0.26+3.38x103(380)1.5x105(380)2T(1)=3237.72940ΔHr0(T(1))=240970.26(T(1))+1.69x103(T(1))2+1.5x105(T(1))ΔHr0(T(1))=240970.26(3237.72940)+1.69x103(3237.72940)2+1.5x105(3237.72940)ΔHr0(T(1))=5585.4322

.. math::

ϵtol,x(1)=|T(1)T(0)T(0)|<ϵtol?ϵtol,x(1)=|(3237.72940)(380)(380)|<(106)?ϵtol,x(1)=9.52<(106)?No, therefore keep going.ϵtol,f(1)=|ΔHr0(T(1))ΔHr0(T(0))ΔHr0(T(0))|<ϵtol?ϵtol,f(1)=|(5585.4322)(23557.02715)(23557.02715)|<(106)?ϵtol,f(1)=0.763<(106)?No, therefore keep going.

*ITERATION 2*

.. math::

T(2)=T(1)240970.26T(1)+1.69x103(T(1))2+1.5x105T(1)(23505)0.26+3.38x103T(1)1.5x105(T(1))2T(2)=(3237.72940)240970.26(3237.72940)+1.69x103(3237.72940)2+1.5x105(3237.72940)(23505)0.26+3.38x103(3237.72940)1.5x105(3237.72940)2T(2)=1640.311ΔHr0(T(2))=240970.26(T(2))+1.69x103(T(2))2+1.5x105(T(2))ΔHr0(T(2))=240970.26(1640.311)+1.69x103(1640.311)2+1.5x105(1640.311)ΔHr0(T(2))=19214.81711

.. math::

ϵtol,x(2)=|T(2)T(1)T(1)|<ϵtol?ϵtol,x(2)=|(1640.311)(3237.72940)(3237.72940)|<(106)?ϵtol,x(2)=0.493<(106)?No, therefore keep going.ϵtol,f(2)=|ΔHr0(T(2))ΔHr0(T(1))ΔHr0(T(1))|<ϵtol?ϵtol,f(2)=|(19214.81711)(5585.4322)(5585.4322)|<(106)?ϵtol,f(1)=2.44<(106)?No, therefore keep going.

*ITERATION 3*

.. math::

T(3)=T(2)240970.26T(2)+1.69x103(T(2))2+1.5x105T(2)(23505)0.26+3.38x103T(2)1.5x105(T(2))2T(3)=(1640.311)240970.26(1640.311)+1.69x103(1640.311)2+1.5x105(1640.311)(23505)0.26+3.38x103(1640.311)1.5x105(1640.311)2T(3)=908.1982ΔHr0(T(3))=240970.26(T(3))+1.69x103(T(3))2+1.5x105(T(3))ΔHr0(T(3))=240970.26(908.1982)+1.69x103(908.1982)2+1.5x105(908.1982)ΔHr0(T(3))=22632.0781

.. math::

ϵtol,x(3)=|T(3)T(2)T(2)|<ϵtol?ϵtol,x(3)=|(908.1982)(1640.311)(1640.311)|<(106)?ϵtol,x(3)=0.45<(106)?No, therefore keep going.ϵtol,f(3)=|ΔHr0(T(3))ΔHr0(T(2))ΔHr0(T(2))|<ϵtol?ϵtol,f(3)=|(22632.0781)(19214.81711)(19214.81711)|<(106)?ϵtol,f(3)=0.178<(106)?No, therefore keep going.

</rst>