Tutorial 5 - 2010 - Solution/Question 3
<rst> <rst-options: 'toc' = False/> <rst-options: 'reset-figures' = False/>
Question 3 [1]
==
- . Write the Newton-Raphson iteration formula that you would use to solve this nonlinear equation.
- . Apply 3 iterations of this formula, also starting from :math:`T = 380` K, and calculate the error tolerances.
Solution
- . The Newton-Raphson algorithm is given on slide 15-17 of the *Section C: Nonlinear Algebraic Equations* slide set.
To apply the Newton-Raphson method we must first calculate the derivative of our function:
.. math::
f'(T) = - 0.26 + 3.38\text{x}10^{-3}T - \frac{1.5\text{x}10^{5}}{T^{2}}
Therefore the Newton-Raphson iteration formula we use is the following:
.. math::
T^{(k+1)} = T^{(k)} - \frac{f(T^{(k)})}{f'(T^{(k)})} = T^{(k)} - \frac{- 24097 - 0.26T + 1.69\text{x}10^{-3}T^{2} + \frac{1.5\text{x}10^{5}}{T} - (-23505)}{- 0.26 + 3.38\text{x}10^{-3}T - \frac{1.5\text{x}10^{5}}{T^{2}}}
- .
We start with :math:`T^{(0)} = 380 K`:
.. math::
*ITERATION 1*
.. math::
.. math::
*ITERATION 2*
.. math::
.. math::
*ITERATION 3*
.. math::
.. math::
</rst>