Difference between revisions of "Multiple reactions - 2013"
Jump to navigation
Jump to search
Kevin Dunn (talk | contribs) |
Kevin Dunn (talk | contribs) |
||
(26 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{ | {{ClassSidebarYouTube | ||
| date = 06 March | | date = 06 March to 14 March | ||
| dates_alt_text = | | dates_alt_text = | ||
| vimeoID1 = | | vimeoID1 = yPH7JvEi1Jw | ||
| vimeoID2 = | | vimeoID2 = SpLniff-kcw | ||
| vimeoID3 = | | vimeoID3 = fX8v4189Riw | ||
| vimeoID4 = 0W48zitUYVw | |||
| vimeoID5 = MvRWk6R0oSc | |||
| course_notes_PDF = | | course_notes_PDF = | ||
| course_notes_alt = Course notes | | course_notes_alt = Course notes | ||
Line 14: | Line 16: | ||
| video_notes1 = | | video_notes1 = | ||
| video_download_link2_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-08C.mp4 | | video_download_link2_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-08C.mp4 | ||
| video_download_link2_MP4_size = M | | video_download_link2_MP4_size = 367 M | ||
| video_notes2 = | | video_notes2 = | ||
| video_download_link3_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-09A.mp4 | | video_download_link3_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-09A.mp4 | ||
| video_download_link3_MP4_size = M | | video_download_link3_MP4_size = 211 M | ||
| video_notes3 = | | video_notes3 = | ||
| video_download_link4_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-09B.mp4 | |||
| video_download_link4_MP4_size = 331 M | |||
| video_notes4 = | |||
| video_download_link5_MP4 = http://learnche.mcmaster.ca/media/3K4-2013-Class-09C.mp4 | |||
| video_download_link5_MP4_size = 243 M | |||
| video_notes5 = | |||
}}__NOTOC__ | }}__NOTOC__ | ||
Line 27: | Line 35: | ||
== Suggested problems == | == Suggested problems == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 34: | Line 41: | ||
! F2006 | ! F2006 | ||
|- | |- | ||
| Problem | | Problem 8-12 | ||
| Problem | | Problem 6-12 | ||
|- | |- | ||
| Problem | | Problem 8-14 (covered in class) | ||
| Problem | | Problem 6-15 (covered in class) | ||
|- | |- | ||
| Problem | | Problem 8-18 (set up equations) | ||
| | | Problem 6-21 (set up equations) | ||
|} | |} | ||
==Class materials == | ==Class materials == | ||
Line 48: | Line 55: | ||
=== 06 March 2013 (08B-2) === | === 06 March 2013 (08B-2) === | ||
* [http://learnche.mcmaster.ca/media/3K4-2013-Class-08B-2.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-08B-2.mp4 video] recording of the class | * [http://learnche.mcmaster.ca/media/3K4-2013-Class-08B-2.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-08B-2.mp4 video] recording of the class. | ||
=== 07 March 2013 (08C) === | |||
* [http://learnche.mcmaster.ca/media/3K4-2013-Class-08C.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-08C.mp4 video] recording of the class. | |||
Polymath code for example in class | Polymath code for example in class. Make sure you plot the instantaneous selectivity, overall selectivity and yield over time. Compare these 3 plots during the batch to understand what each of these 3 variables mean. | ||
<syntaxhighlight lang="text"> | <syntaxhighlight lang="text"> | ||
# ODEs | # ODEs | ||
Line 67: | Line 76: | ||
k1 = 0.5 # 1/hr | k1 = 0.5 # 1/hr | ||
k2 = 0.2 # 1/hr | k2 = 0.2 # 1/hr | ||
S_DU = (k1*CA - k2*CB) / (k2*CB | |||
Overall_SDU = CB/ | # The 3 important algebraic variables: plot these 3 against time and interpret them. | ||
Yield = CB/(2 - CA | S_DU = if (t>0.001) then (k1*CA - k2*CB) / (k2*CB) else 0 | ||
Overall_SDU = if (t>0.001) then CB/CC else 0 | |||
Yield = if (t>0.001) then CB / (2 - CA) else 0 | |||
# Independent variable details | # Independent variable details | ||
Line 75: | Line 86: | ||
t(f) = 3.1 # hours | t(f) = 3.1 # hours | ||
</syntaxhighlight> | </syntaxhighlight> | ||
=== 11 March 2013 (09A) === | |||
* [http://learnche.mcmaster.ca/media/3K4-2013-Class-09A.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-09A.mp4 video] recording of the class. | |||
=== 13 March 2013 (09B) === | |||
* [http://learnche.mcmaster.ca/media/3K4-2013-Class-09B.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-09B.mp4 video] recording of the class. | |||
Code for the CSTR example: | |||
<syntaxhighlight lang="matlab"> | |||
tau = 0:0.05:10; | |||
CA0 = 2; % mol/L | |||
k1 = 0.5; % 1/hr | |||
k2 = 0.2; % 1/hr | |||
CA = CA0 ./ (1 + k1 .* tau); | |||
CB = tau .* k1 .* CA ./ (1 + k2 .* tau); | |||
CC = tau .* k2 .* CB; | |||
instant_selectivity = (k1.*CA - k2.*CB) ./ (k2.*CB); | |||
overall_selectivity = CB ./ CC; | |||
overall_yield = CB ./ (CA0 - CA); | |||
conversion = (CA0 - CA)./CA0; | |||
plot(tau, CA, tau, CB, tau, CC) | |||
grid on | |||
xlabel('\tau') | |||
ylabel('Concentrations [mol/L]') | |||
figure | |||
plot(tau, overall_selectivity) | |||
xlabel('\tau') | |||
ylabel('Overall Selectivity') | |||
grid on | |||
figure | |||
plot(tau, overall_yield) | |||
xlabel('\tau') | |||
ylabel('Overall Yield') | |||
grid on | |||
figure | |||
plot(tau, conversion) | |||
xlabel('\tau') | |||
ylabel('Conversion') | |||
hold on | |||
grid on | |||
</syntaxhighlight> | |||
=== 14 March 2013 (09C) === | |||
* [http://learnche.mcmaster.ca/media/3K4-2013-Class-09C.mp3 Audio] and [http://learnche.mcmaster.ca/media/3K4-2013-Class-09C.mp4 video] recording of the class. | |||
Despite the fact that Polymath code is shorter to write, ''I still recommend you use MATLAB or Python''. For example, comparing two simulations and generating plots is so much easier in MATLAB than Polymath. | |||
{| class="wikitable" | |||
|- | |||
! MATLAB | |||
! Polymath | |||
|- | |||
| | |||
'''<tt>pfr.m</tt>''' | |||
<syntaxhighlight lang="matlab"> | |||
function d_depnt__d_indep = pfr(indep, depnt) | |||
% Dynamic balance for the reactor | |||
% | |||
% indep: the independent ODE variable, such as time or length | |||
% depnt: a vector of dependent variables | |||
% | |||
% Returns d(depnt)/d(indep) = a vector of ODEs | |||
% Assign some variables for convenience of notation | |||
FA = depnt(1); | |||
FB = depnt(2); | |||
FC = depnt(3); | |||
FD = depnt(4); | |||
FE = depnt(5); | |||
FG = depnt(6); | |||
FW = depnt(7); | |||
y = depnt(8); | |||
% Constant(s) | |||
k1 = 0.014; % L^{0.5} / mol^{0.5} / s | |||
k2 = 0.007; % L/(mol.s) | |||
k3 = 0.14; % 1/s | |||
k4 = 0.45; % L/(mol.s) | |||
alpha = 0.002; % 1/L | |||
CT0 = 1.0; % mol/L | |||
FA0 = 10; % mol/s | |||
FB0 = 5.0; % mol/s | |||
FT0 = FA0 + FB0; | |||
FT = FA + FB + FC + FD + FE + FW + FG; | |||
CA = CT0 * FA/FT * y; | |||
CB = CT0 * FB/FT * y; | |||
CC = CT0 * FC/FT * y; | |||
CD = CT0 * FD/FT * y; | |||
CE = CT0 * FE/FT * y; | |||
CG = CT0 * FG/FT * y; | |||
CW = CT0 * FW/FT * y; | |||
% Reaction 1: A + 0.5B -> C | |||
r1A = -k1*(CA)*(CB)^(0.5); | |||
r1B = 0.5*r1A; | |||
r1C = -r1A; | |||
%# Reaction 2: 2A -> D | |||
r2A = -k2*(CA)^2; | |||
r2D = -r2A/2; | |||
% Reaction 3: C -> E + W | |||
r3C = -k3*(CC); | |||
r3E = -r3C; | |||
r3W = -r3C; | |||
% Reaction 4: D + W -> G + C | |||
r4D = -k4*(CD)*(CW); | |||
r4W = r4D; | |||
r4G = -r4D; | |||
r4C = -r4D; | |||
% Output from this ODE function must be a COLUMN vector, with n rows | |||
n = numel(depnt); | |||
d_depnt__d_indep = zeros(n,1); | |||
d_depnt__d_indep(1) = r1A + r2A; | |||
d_depnt__d_indep(2) = r1B; | |||
d_depnt__d_indep(3) = r1C + r3C + r4C; | |||
d_depnt__d_indep(4) = r2D + r4D; | |||
d_depnt__d_indep(5) = r3E; | |||
d_depnt__d_indep(6) = r3W + r4W; | |||
d_depnt__d_indep(7) = r4G; | |||
d_depnt__d_indep(8) = -alpha/(2*y) * (FT / FT0); | |||
</syntaxhighlight> | |||
'''<tt>ODE_driver.m</tt>''' | |||
<syntaxhighlight lang="matlab"> | |||
% Integrate the ODE | |||
% ----------------- | |||
% The independent variable: requires an initial and final value: | |||
indep_start = 0.0; % kg | |||
indep_final = 500.0; % kg | |||
% Set initial condition(s) for dependent variables | |||
FA_depnt_zero = 10.0; % i.e. FA(W=0) = 10.0 | |||
FB_depnt_zero = 5.0; % i.e. FB(W=0) = 10.0 | |||
FC_depnt_zero = 0.0; % i.e. FC(W=0) = 10.0 | |||
FD_depnt_zero = 0.0; % etc | |||
FE_depnt_zero = 0.0; | |||
FG_depnt_zero = 0.0; | |||
FW_depnt_zero = 0.0; | |||
y_depnt_zero = 1.0; % i.e. y(W=0) = 1.0 | |||
IC = [FA_depnt_zero, FB_depnt_zero, FC_depnt_zero, FD_depnt_zero, ... | |||
FE_depnt_zero FG_depnt_zero, FW_depnt_zero, y_depnt_zero]; | |||
% Integrate the ODE(s): | |||
[indep, depnt] = ode45(@pfr, [indep_start, indep_final], IC); | |||
% Calculate Yields and Selectivities | |||
FA = depnt(:,1); | |||
FC = depnt(:,3); | |||
FD = depnt(:,4); | |||
FE = depnt(:,5); | |||
Yield_C = FC ./ (FA_depnt_zero - FA); | |||
S_CE = FC./FE; | |||
S_CD = FC./FD; | |||
% Plot the results: | |||
clf; | |||
plot(indep, depnt(:,1), indep, depnt(:,2), indep, depnt(:,3), ... | |||
indep, depnt(:,4), indep, depnt(:,5), indep, depnt(:,6), ... | |||
indep, depnt(:,7), indep, depnt(:,8)) | |||
grid('on') | |||
hold('on') | |||
plot(indep, depnt(:,2), 'g') | |||
xlabel('Catalyst weight, W [kg]') | |||
ylabel('Concentrations and pressure drop') | |||
legend('FA', 'FB', 'FC', 'FD', 'FE', 'FG', 'FW', 'y') | |||
</syntaxhighlight> | |||
| valign="top"| | |||
<syntaxhighlight lang="text"> | |||
k1 = 0.014 # L^{0.5} / mol^{0.5} / s | |||
k2 = 0.007 # L/(mol.s) | |||
k3 = 0.14 # 1/s | |||
k4 = 0.45 # L/(mol.s) | |||
alpha = 0.002 # 1/L | |||
CT0 = 1.0 # mol/L | |||
FA0 = 10 # mol/s | |||
FB0 = 5.0 # mol/s | |||
FT0 = FA0 + FB0 | |||
# Concentration functions (isothermal conditions) | |||
CA = CT0 * FA/FT * y | |||
CB = CT0 * FB/FT * y | |||
CC = CT0 * FC/FT * y | |||
CD = CT0 * FD/FT * y | |||
CE = CT0 * FE/FT * y | |||
CG = CT0 * FG/FT * y | |||
CW = CT0 * FW/FT * y | |||
FT = FA + FB + FC + FD + FE + FW + FG | |||
# Reaction 1: A + 0.5B -> C | |||
r1A = -k1*(CA)*(CB)^(0.5) | |||
r1B = 0.5*r1A | |||
r1C = -r1A | |||
# Reaction 2: 2A -> D | |||
r2A = -k2*(CA)^2 | |||
r2D = -r2A/2 | |||
# Reaction 3: C -> E + W | |||
r3C = -k3*(CC) | |||
r3E = -r3C | |||
r3W = -r3C | |||
# Reaction 4: D + W -> G + C | |||
r4D = -k4*(CD)*(CW) | |||
r4W = r4D | |||
r4G = -r4D | |||
r4C = -r4D | |||
# ODE's | |||
d(FA) / d(W) = r1A + r2A | |||
FA(0) = 10 | |||
d(FB) / d(W) = r1B | |||
FB(0) = 5 | |||
d(FC) / d(W) = r1C + r3C + r4C | |||
FC(0) = 0 | |||
d(FD) / d(W) = r2D + r4D | |||
FD(0) = 0 | |||
d(FE) / d(W) = r3E | |||
FE(0) = 0 | |||
d(FW) / d(W) = r3W + r4W | |||
FW(0) = 0 | |||
d(FG) / d(W) = r4G | |||
FG(0) = 0 | |||
W(0) = 0 # kg | |||
W(f) = 500 # kg | |||
Yield_C = if (W>0.001) then (FC / (FA0 - FA)) else (0) | |||
S_CE = if (W>0.001) then (FC/FE) else (0) | |||
S_CD = if (W>0.001) then (FC/FD) else (0) | |||
d(y) / d(W) = -alpha/(2*y) * (FT / FT0) | |||
y(0) = 1.0 | |||
</syntaxhighlight> | |||
|} |
Latest revision as of 17:28, 25 January 2017
Class date(s): | 06 March to 14 March | ||||
| |||||
| |||||
| |||||
| |||||
| |||||
Textbook references
- F2011: Chapter 8
- F2006: Chapter 6
Suggested problems
F2011 | F2006 |
---|---|
Problem 8-12 | Problem 6-12 |
Problem 8-14 (covered in class) | Problem 6-15 (covered in class) |
Problem 8-18 (set up equations) | Problem 6-21 (set up equations) |
Class materials
06 March 2013 (08B-2)
07 March 2013 (08C)
Polymath code for example in class. Make sure you plot the instantaneous selectivity, overall selectivity and yield over time. Compare these 3 plots during the batch to understand what each of these 3 variables mean.
# ODEs
d(CA) / d(t) = -k1*CA
d(CB) / d(t) = k1*CA - k2*CB
d(CC) / d(t) = k2*CB
# Initial conditions
CA(0) = 2 # mol/L
CB(0) = 0 # mol/L
CC(0) = 0 # mol/L
# Algebraic equations
k1 = 0.5 # 1/hr
k2 = 0.2 # 1/hr
# The 3 important algebraic variables: plot these 3 against time and interpret them.
S_DU = if (t>0.001) then (k1*CA - k2*CB) / (k2*CB) else 0
Overall_SDU = if (t>0.001) then CB/CC else 0
Yield = if (t>0.001) then CB / (2 - CA) else 0
# Independent variable details
t(0) = 0
t(f) = 3.1 # hours
11 March 2013 (09A)
13 March 2013 (09B)
Code for the CSTR example:
tau = 0:0.05:10;
CA0 = 2; % mol/L
k1 = 0.5; % 1/hr
k2 = 0.2; % 1/hr
CA = CA0 ./ (1 + k1 .* tau);
CB = tau .* k1 .* CA ./ (1 + k2 .* tau);
CC = tau .* k2 .* CB;
instant_selectivity = (k1.*CA - k2.*CB) ./ (k2.*CB);
overall_selectivity = CB ./ CC;
overall_yield = CB ./ (CA0 - CA);
conversion = (CA0 - CA)./CA0;
plot(tau, CA, tau, CB, tau, CC)
grid on
xlabel('\tau')
ylabel('Concentrations [mol/L]')
figure
plot(tau, overall_selectivity)
xlabel('\tau')
ylabel('Overall Selectivity')
grid on
figure
plot(tau, overall_yield)
xlabel('\tau')
ylabel('Overall Yield')
grid on
figure
plot(tau, conversion)
xlabel('\tau')
ylabel('Conversion')
hold on
grid on
14 March 2013 (09C)
Despite the fact that Polymath code is shorter to write, I still recommend you use MATLAB or Python. For example, comparing two simulations and generating plots is so much easier in MATLAB than Polymath.
MATLAB | Polymath |
---|---|
pfr.m function d_depnt__d_indep = pfr(indep, depnt)
% Dynamic balance for the reactor
%
% indep: the independent ODE variable, such as time or length
% depnt: a vector of dependent variables
%
% Returns d(depnt)/d(indep) = a vector of ODEs
% Assign some variables for convenience of notation
FA = depnt(1);
FB = depnt(2);
FC = depnt(3);
FD = depnt(4);
FE = depnt(5);
FG = depnt(6);
FW = depnt(7);
y = depnt(8);
% Constant(s)
k1 = 0.014; % L^{0.5} / mol^{0.5} / s
k2 = 0.007; % L/(mol.s)
k3 = 0.14; % 1/s
k4 = 0.45; % L/(mol.s)
alpha = 0.002; % 1/L
CT0 = 1.0; % mol/L
FA0 = 10; % mol/s
FB0 = 5.0; % mol/s
FT0 = FA0 + FB0;
FT = FA + FB + FC + FD + FE + FW + FG;
CA = CT0 * FA/FT * y;
CB = CT0 * FB/FT * y;
CC = CT0 * FC/FT * y;
CD = CT0 * FD/FT * y;
CE = CT0 * FE/FT * y;
CG = CT0 * FG/FT * y;
CW = CT0 * FW/FT * y;
% Reaction 1: A + 0.5B -> C
r1A = -k1*(CA)*(CB)^(0.5);
r1B = 0.5*r1A;
r1C = -r1A;
%# Reaction 2: 2A -> D
r2A = -k2*(CA)^2;
r2D = -r2A/2;
% Reaction 3: C -> E + W
r3C = -k3*(CC);
r3E = -r3C;
r3W = -r3C;
% Reaction 4: D + W -> G + C
r4D = -k4*(CD)*(CW);
r4W = r4D;
r4G = -r4D;
r4C = -r4D;
% Output from this ODE function must be a COLUMN vector, with n rows
n = numel(depnt);
d_depnt__d_indep = zeros(n,1);
d_depnt__d_indep(1) = r1A + r2A;
d_depnt__d_indep(2) = r1B;
d_depnt__d_indep(3) = r1C + r3C + r4C;
d_depnt__d_indep(4) = r2D + r4D;
d_depnt__d_indep(5) = r3E;
d_depnt__d_indep(6) = r3W + r4W;
d_depnt__d_indep(7) = r4G;
d_depnt__d_indep(8) = -alpha/(2*y) * (FT / FT0);
ODE_driver.m % Integrate the ODE
% -----------------
% The independent variable: requires an initial and final value:
indep_start = 0.0; % kg
indep_final = 500.0; % kg
% Set initial condition(s) for dependent variables
FA_depnt_zero = 10.0; % i.e. FA(W=0) = 10.0
FB_depnt_zero = 5.0; % i.e. FB(W=0) = 10.0
FC_depnt_zero = 0.0; % i.e. FC(W=0) = 10.0
FD_depnt_zero = 0.0; % etc
FE_depnt_zero = 0.0;
FG_depnt_zero = 0.0;
FW_depnt_zero = 0.0;
y_depnt_zero = 1.0; % i.e. y(W=0) = 1.0
IC = [FA_depnt_zero, FB_depnt_zero, FC_depnt_zero, FD_depnt_zero, ...
FE_depnt_zero FG_depnt_zero, FW_depnt_zero, y_depnt_zero];
% Integrate the ODE(s):
[indep, depnt] = ode45(@pfr, [indep_start, indep_final], IC);
% Calculate Yields and Selectivities
FA = depnt(:,1);
FC = depnt(:,3);
FD = depnt(:,4);
FE = depnt(:,5);
Yield_C = FC ./ (FA_depnt_zero - FA);
S_CE = FC./FE;
S_CD = FC./FD;
% Plot the results:
clf;
plot(indep, depnt(:,1), indep, depnt(:,2), indep, depnt(:,3), ...
indep, depnt(:,4), indep, depnt(:,5), indep, depnt(:,6), ...
indep, depnt(:,7), indep, depnt(:,8))
grid('on')
hold('on')
plot(indep, depnt(:,2), 'g')
xlabel('Catalyst weight, W [kg]')
ylabel('Concentrations and pressure drop')
legend('FA', 'FB', 'FC', 'FD', 'FE', 'FG', 'FW', 'y')
|
k1 = 0.014 # L^{0.5} / mol^{0.5} / s
k2 = 0.007 # L/(mol.s)
k3 = 0.14 # 1/s
k4 = 0.45 # L/(mol.s)
alpha = 0.002 # 1/L
CT0 = 1.0 # mol/L
FA0 = 10 # mol/s
FB0 = 5.0 # mol/s
FT0 = FA0 + FB0
# Concentration functions (isothermal conditions)
CA = CT0 * FA/FT * y
CB = CT0 * FB/FT * y
CC = CT0 * FC/FT * y
CD = CT0 * FD/FT * y
CE = CT0 * FE/FT * y
CG = CT0 * FG/FT * y
CW = CT0 * FW/FT * y
FT = FA + FB + FC + FD + FE + FW + FG
# Reaction 1: A + 0.5B -> C
r1A = -k1*(CA)*(CB)^(0.5)
r1B = 0.5*r1A
r1C = -r1A
# Reaction 2: 2A -> D
r2A = -k2*(CA)^2
r2D = -r2A/2
# Reaction 3: C -> E + W
r3C = -k3*(CC)
r3E = -r3C
r3W = -r3C
# Reaction 4: D + W -> G + C
r4D = -k4*(CD)*(CW)
r4W = r4D
r4G = -r4D
r4C = -r4D
# ODE's
d(FA) / d(W) = r1A + r2A
FA(0) = 10
d(FB) / d(W) = r1B
FB(0) = 5
d(FC) / d(W) = r1C + r3C + r4C
FC(0) = 0
d(FD) / d(W) = r2D + r4D
FD(0) = 0
d(FE) / d(W) = r3E
FE(0) = 0
d(FW) / d(W) = r3W + r4W
FW(0) = 0
d(FG) / d(W) = r4G
FG(0) = 0
W(0) = 0 # kg
W(f) = 500 # kg
Yield_C = if (W>0.001) then (FC / (FA0 - FA)) else (0)
S_CE = if (W>0.001) then (FC/FE) else (0)
S_CD = if (W>0.001) then (FC/FD) else (0)
d(y) / d(W) = -alpha/(2*y) * (FT / FT0)
y(0) = 1.0
|