Difference between revisions of "Isothermal reactor design - 2013"
Kevin Dunn (talk | contribs) m |
Kevin Dunn (talk | contribs) m |
||
Line 109: | Line 109: | ||
In a file called '''<tt>membrane.m</tt>''': | In a file called '''<tt>membrane.m</tt>''': | ||
<syntaxhighlight lang="matlab"> | <syntaxhighlight lang="matlab"> | ||
function d_depnt__d_indep = membranem(indep, depnt) | |||
% Dynamic balance for the packed bed reactor (PBR); demo problem class 05C | |||
% | |||
% indep: the independent ODE variable, such as time or length | |||
% depnt: a vector of dependent variables | |||
% | |||
% X = depnt(1) = the conversion | |||
% y = depnt(2) = the pressure ratio = P/P_0 = y | |||
% | |||
% Returns d(depnt)/d(indep) = a vector of ODEs | |||
% Assign some variables for convenience of notation | |||
FA = depnt(1); | |||
FB = depnt(2); | |||
FC = depnt(3); | |||
% Constants | |||
kDiff = 0.005; % s^{-1} | |||
k = 0.01; % s^{-1} | |||
KC = 50; % mol.m^{-3} | |||
P0 = 830600; % Pa | |||
T0 = 500; % K | |||
R = 8.314; % J/(mol.K) | |||
% Algebraic equations | |||
FT = FA + FB + FC; | |||
CT0 = P0 / (R * T0); | |||
CA = CT0 * FA / FT; | |||
CB = CT0 * FB / FT; | |||
CC = CT0 * FC / FT; | |||
RB = kDiff * CB; | |||
rA = -k * (CA - CB * CC / KC); | |||
rB = -rA; | |||
rC = -rA; | |||
% Output from this ODE function must be a COLUMN vector, with n rows | |||
n = numel(depnt); | |||
d_depnt__d_indep = zeros(n,1); | |||
d_depnt__d_indep(1) = rA; | |||
d_depnt__d_indep(2) = rB - RB; | |||
d_depnt__d_indep(3) = rC; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
In a separate file (any name), for example: '''<tt>ode_driver.m</tt>''', which will "drive" the ODE solver: | In a separate file (any name), for example: '''<tt>ode_driver.m</tt>''', which will "drive" the ODE solver: | ||
<syntaxhighlight lang="matlab"> | <syntaxhighlight lang="matlab"> | ||
% Integrate the ODE | |||
% ----------------- | |||
% The independent variable always requires an initial and final value: | |||
indep_start = 0.0; % m^3 | |||
indep_final = 0.4; % m^3 | |||
% Set initial condition(s): for integrating variables (dependent variables) | |||
FA_depnt_zero = 0.25; % i.e. FA(V=0) = 15 mol/min = 0.25 mol/s | |||
FB_depnt_zero = 0.0; % i.e. FB(V=0) = 0 mol/s | |||
FC_depnt_zero = 0.0; % i.e. FC(V=0) = 0 mol/s | |||
% Integrate the ODE(s): | |||
[V, depnt] = ode45(@membranem, [indep_start, indep_final], [FA_depnt_zero, FB_depnt_zero, FC_depnt_zero]); | |||
% Plot the results: | |||
clf; | |||
plot(V, depnt(:,1), 'b') | |||
grid('on') | |||
hold('on') | |||
plot(V, depnt(:,2), 'g') | |||
plot(V, depnt(:,3), 'r') | |||
xlabel('Reactor volume, V [m^3]') | |||
ylabel('F_A, F_B and F_C') | |||
legend('F_A', 'F_B', 'F_C') | |||
</syntaxhighlight> | </syntaxhighlight> | ||
[[Image:Plots-MATLAB.png | 550px]] | [[Image:Plots-MATLAB.png | 550px]] |
Revision as of 00:55, 26 February 2013
Class date(s): | 04 February to 14 February | ||||
| |||||
| |||||
| |||||
| |||||
| |||||
| |||||
- F2011: Chapter 5 and 6
- F2006: Chapter 4
04 February 2013 (05A)
- General problem solving strategy for reactor engineering
- Audio and video recording of the class
06 February 2013 (05B)
- The Ergun equation derivation
- Audio and video recording of the class
07 February 2013 (05C)
- Notes used during the class
- The spreadsheet with the Ergun equation example. Use it to try
- different lengths of reactor
- different catalyst particle sizes
- different pipe diameters
- gas properties (e.g. density)
- to see the effect on pressure drop in the packed bed.
11 February 2013 (06A)
- Audio and video recording of the class
- Codes to solve the example in class are available on the page software for integrating ODEs.
14 February 2013 (06C): midterm review
25 February 2013 (07A)
The example covered in class is based on example 4-8 in F2006 and example 6-2 in F2011. <rst> <rst-options: 'toc' = False/> <rst-options: 'reset-figures' = False/> The 3 ODE's are:
.. math::
\dfrac{dF_A}{dV} &= r_A\\ \dfrac{dF_B}{dV} &= r_B - R_B \\ \dfrac{dF_C}{dV} &= r_C
where :math:`-r_A = r_B = r_C` and :math:`-r_A = k\left(C_A - \dfrac{C_B C_C}{K_C} \right)`, and :math:`R_B = k_\text{diff}C_B`.
- :math:`k = 0.01\,\text{s}^{-1}`
- :math:`k_\text{diff} = 0.005\,\text{s}^{-1}`
- :math:`K_C = 50\,\text{mol.m}^{-3}`
We derived earlier in the course that
.. math:: C_A = C_\text{TO}\left(\dfrac{F_A}{F_T}\right)\left(\dfrac{P}{P_0}\right)\left(\dfrac{T_0}{T}\right)
Assuming isothermal and isobaric conditions in the membrane:
.. math:: C_A = C_\text{T0}\left(\dfrac{F_A}{F_T}\right)
where :math:`F_T = F_A + F_B + F_C` and :math:`C_\text{T0} = \dfrac{P_0}{RT_0}`. Similar equations can be written for :math:`C_B` and :math:`C_C`.
Using all of the above derivations, we can set up our numerical integration as shown below. </rst>
MATLAB | Python |
---|---|
In a file called membrane.m: function d_depnt__d_indep = membranem(indep, depnt)
% Dynamic balance for the packed bed reactor (PBR); demo problem class 05C
%
% indep: the independent ODE variable, such as time or length
% depnt: a vector of dependent variables
%
% X = depnt(1) = the conversion
% y = depnt(2) = the pressure ratio = P/P_0 = y
%
% Returns d(depnt)/d(indep) = a vector of ODEs
% Assign some variables for convenience of notation
FA = depnt(1);
FB = depnt(2);
FC = depnt(3);
% Constants
kDiff = 0.005; % s^{-1}
k = 0.01; % s^{-1}
KC = 50; % mol.m^{-3}
P0 = 830600; % Pa
T0 = 500; % K
R = 8.314; % J/(mol.K)
% Algebraic equations
FT = FA + FB + FC;
CT0 = P0 / (R * T0);
CA = CT0 * FA / FT;
CB = CT0 * FB / FT;
CC = CT0 * FC / FT;
RB = kDiff * CB;
rA = -k * (CA - CB * CC / KC);
rB = -rA;
rC = -rA;
% Output from this ODE function must be a COLUMN vector, with n rows
n = numel(depnt);
d_depnt__d_indep = zeros(n,1);
d_depnt__d_indep(1) = rA;
d_depnt__d_indep(2) = rB - RB;
d_depnt__d_indep(3) = rC;
In a separate file (any name), for example: ode_driver.m, which will "drive" the ODE solver: % Integrate the ODE
% -----------------
% The independent variable always requires an initial and final value:
indep_start = 0.0; % m^3
indep_final = 0.4; % m^3
% Set initial condition(s): for integrating variables (dependent variables)
FA_depnt_zero = 0.25; % i.e. FA(V=0) = 15 mol/min = 0.25 mol/s
FB_depnt_zero = 0.0; % i.e. FB(V=0) = 0 mol/s
FC_depnt_zero = 0.0; % i.e. FC(V=0) = 0 mol/s
% Integrate the ODE(s):
[V, depnt] = ode45(@membranem, [indep_start, indep_final], [FA_depnt_zero, FB_depnt_zero, FC_depnt_zero]);
% Plot the results:
clf;
plot(V, depnt(:,1), 'b')
grid('on')
hold('on')
plot(V, depnt(:,2), 'g')
plot(V, depnt(:,3), 'r')
xlabel('Reactor volume, V [m^3]')
ylabel('F_A, F_B and F_C')
legend('F_A', 'F_B', 'F_C')
|
asdasd
|
and in Polymath:
d(FA)/d(V) = rA
d(FB)/d(V) = rB - kDiff * CB
d(FC)/d(V) = rC
FA(0) = 0.25 # mol/s
FB(0) = 0.0 # mol/s
FC(0) = 0.0 # mol/s
# Independent variable
V(0) = 0
V(f) = 0.4 #m^3
# Constants
kDiff = 0.005 # s^{-1}
k = 0.01 # s^{-1}
KC = 50 # mol.m^{-3}
P0 = 830600 # Pa
T0 = 500 # K
R = 8.314 # J/(mol.K)
# Algebraic equations
FT = FA + FB + FC
CT0 = P0 / (R * T0)
CA = CT0 * FA / FT
CB = CT0 * FB / FT
CC = CT0 * FC / FT
rA = -k * (CA - CB * CC / KC)
rB = -rA
rC = -rA